Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-24T03:31:14.219Z Has data issue: false hasContentIssue false

A Study of the Photoluminescence and Reflectivity Spectra of MOCVD Grown MnSe

Published online by Cambridge University Press:  22 February 2011

M. Di Blasio
Affiliation:
Université Montpellier II, Groupe d'Etudes des Semiconducteurs, URA 357 du CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5
L. Aigouy
Affiliation:
Université Montpellier II, Groupe d'Etudes des Semiconducteurs, URA 357 du CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5
M. Averous
Affiliation:
Université Montpellier II, Groupe d'Etudes des Semiconducteurs, URA 357 du CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5
J. Calas
Affiliation:
Université Montpellier II, Groupe d'Etudes des Semiconducteurs, URA 357 du CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5
P. Tomasini
Affiliation:
Laboratoire de Physicochimie des Materiaux Solide, URA 407 du CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5
A. Haidoux
Affiliation:
Laboratoire de Physicochimie des Materiaux Solide, URA 407 du CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5
J.C. Tedenac
Affiliation:
Laboratoire de Physicochimie des Materiaux Solide, URA 407 du CNRS, Place E. Bataillon, 34095 Montpellier Cedex 5
Get access

Abstract

Photoluminescence (PL) experiments at 2K are performed on MOCVD grown MnSe. The precursors used in the growth stage are methylpentacarbonylmanganese and diethylselenide. Pyrolysis of the percursors is realized inside a gradient reactor under a constant H2 flux, between 280-55°TC. The compound is epitaxially grown on various substrates (Si, InP, GaSb, GaAs, ZnTe/GaAs, etc.). On some of these samples the compound presents a zinc blende structure, while in the other samples rock salt formation has been identified. The first substrate is used because of its interest in Si technology, while the others are used because MnSe can be grown in the zinc blende phase for very thin layers. For the first time x-ray diffraction data has allowed us to determine the lattice constant of zincblende MnSe (aMnse (oct)=5.818Å), confirming the close approximation (a ∼ 5.9Å) used from the Zn1-xMnxSe alloy. These compounds have visible Mn++ transitions at 2.12-5eV; other features are also visible at 2.3-4, 2.7, and 3.0eV. The energy gap transition of tetrahedral thin film layers of MnSe is seen for the first time in PL spectra. A temperature dependant PL study is performed on MnSe in the 2-200K range. Reflectivity experiments are used to attempt to identify the internal manganese transitions. A qualitative PL analysis of the samples grown at different temperatures and on different substrates is provided. A Stokes shift is encountered when the results are compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nurmikko, A. V., Gunshor, R. L., Kobayashi, M., J. Cryst. Growth 117; 432 (1992)Google Scholar
2. Puydt, J. M. De, Hasse, M.A., Qui, J., Cheng, H., J. Cryst. Growth 117; 1078 (1992)Google Scholar
3. Sun, Gang, Shahzad, K., Gaines, J. M. and Khurgin, J. B., Appl. Phys. Lett. 59, 310 (1991)Google Scholar
4. Oczkiewicz, B., Twardowski, A. and Demianiuk, M., Solid State Commun. 0, 1 (1987)Google Scholar
5. Kolodziejski, L.A., Appl. Phys. Lett. 47, 169 (1985)Google Scholar
6. Heimbrodt, W., Goede, O., Tschentscher, I., Weinhold, V., Klimakow, A., Pohl, U., Jacobs, K. and Hoffman, N., Wide-band-gap Semiconductors, seventh Trieste ICTP-IUPAP Semiconductor Symposium (1992), PhysicaB (1993), edited by Frova, F. and Tosatti, E. (1993)Google Scholar
7. Furdyna, J. K., J. Appl. Phys., 64 R29 (1988)Google Scholar
8. Bylsma, R. B., Becker, W. M., Kossut, J., Debska, U., Yoder-Short, D., Phys. Rev. B 33, 8207 (1986)Google Scholar
9. Pain, G.N., Bharratula, N., Christansz, G.I., Kibel, M.H., Kwietniak, M.S., Sandford, C., Warminski, T., Dickson, R.S., Rowe, R.S., McGregor, K., Deacon, G. B., West, B.O., Glanvill, S.R., Hay, D. G., Rossouw, C. J., Stevenson, A. W., J. Cryst. Growth 101, 208 (1990)Google Scholar
10. Christiansz, G. I., Elms, T. J., Pain, G. N., Pierson, R. R., J. Cryst. Growth 93, 589 (1988)Google Scholar
11. Nouhi, A., Stirn, R.J., Appl. Phys. Letters 51, 2251 (1987)Google Scholar
12. Mazur, J. H., Grodzinski, P., Nouhi, A., Stirn, R. J., Mater. Res. Soc. Symp. Proc. 102, 337 (1988)Google Scholar
13. Rohatgi, A., Ringel, S. A., Welch, J., Meeks, E., Pollard, K., Erbil, A., Summers, C. J., Meyers, P. V. and Liu, C. H., Sollar Cells 24, 185 (1988)Google Scholar
14. Feng, Z.C., Sudharsanan, R., Perkowitz, S., Erbil, A., Pollard, K. T. and Rohatgi, A., J. Appl. Phys. 64, 6861 (1988)Google Scholar
15. Hieber, W. and Romberg, E., Z. Anorg. Allg. Chem. 221, 321 (1935)Google Scholar
16.Handbook of OrganometallicsGoogle Scholar
17. Bylsma, R. B., Kossut, J. and Becker, W. M., Kolodziejski, L. A., Gunshor, R. L. and Frohne, R., J. Appl. Phys. 61(8), 3011 (1987)Google Scholar
18. Giebultowicz, T. M., Klosowski, P., Rhyne, J. J., Samarth, N., Luo, Hong and Furdyna, J. K., Physica B 180 & 181, 485 (1992)Google Scholar
19.Landolt-Bornstein vol 17b 311Google Scholar
20. Geode, O. and Thong, D. D., Phys. Stat. Sol. B 124, 343 (1984)Google Scholar
21. Grancharova, E.I., Lascaray, J.P., Diouri, T and Allegre, J, Phys. Stat. Sol. B113, 503 (1982)Google Scholar
22. Benecke, C., Busse, W. and Gumlich, H. E., J. Cryst. Growth 101, 931 (1990)Google Scholar
23 Yang, Fang, Henderson, B. O'Donnell, K. P., Wide-band-gap Semiconductors, seventh Trieste ICTP-IUPAP Semiconductor Symposium (1992), PhysicaB (1993), edited by Frova, F. and Tosatti, E. 362 Google Scholar