Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T06:25:31.798Z Has data issue: false hasContentIssue false

A Study of the Electrocatalytic Properties of SrCo0.8Fe0.2O3-δ by Impedance Spectroscopy

Published online by Cambridge University Press:  16 February 2011

Al Quoc Pham
Affiliation:
University of Houston, Department of Chemistry and Texas Center for Superconductivity, Houston, TX 77204-5641
Allan J. Jacobson
Affiliation:
University of Houston, Department of Chemistry and Texas Center for Superconductivity, Houston, TX 77204-5641
Get access

Abstract

The electrocatalytic behavior of the mixed electron - ion conductor SrCo0.8Fe0.2O3-δ, in the form of an electrode on YSZ, has been studied using impedance spectroscopy at low frequencies. The results suggest that the electrode process is dominated by the surface exchange at high temperatures and by the bulk oxygen diffusion at lower temperatures. No limiting current was observed in I-V measurements. The electrode polarization decreased with increasing current density. The creation of additonal oxygen vacancies in the electrode material is suggested to account for the better performance at the higher current densities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carter, S., Selcuk, A., Charter, R. J., Kajda, J., Kilner, J. A. and Steele, B. C. H., Solid State Ionics 53-56, 597 (1992).Google Scholar
2. Mizusaki, J., Tagawa, H., Naraya, K. and Sasamoto, T., Solid State Ionics 49, 111 (1991).Google Scholar
3. Misuzaki, J., Tagawa, H., Tsuneyoshi, K. and Sawata, A., J. Electrochem. Soc., 138, 1867 (1991).Google Scholar
4. Hammouche, A., Siebert, E., Hammou, A. and Kleitz, M., J. Electrochem. Soc. 138, 1212 (1991).Google Scholar
5. Gharbage, B., Panier, T. and Hammou, A., J. Electrochem. Soc. 141, 2118 (1994)Google Scholar
6. Inoue, T., Eguchi, K., Setoguchi, T. and Arai, H., Solid State Ionics 40-41, 407 (1990).Google Scholar
7. Teraoka, Y., Zhang, H.M., Furukawa, S. and Yamazoe, N., Chem. Letters 1743 (1985).Google Scholar
8. Johnson, D. W. Jr., Gallagher, P., Schrey, F. and Rhodes, W.W., Ceram. Bulletin 55, 520 (1976).Google Scholar
9. Boukamp, B. A., Solid State lonics 20, 31 (1986).Google Scholar
10. Kruidhof, H., Bouwmesster, H. J. M., Doom, R. H. E. V. and Burggraaf, A. J., Solid State Ionics 63-65, 816 (1993)Google Scholar
11. Liu, L. M., Lee, T. H., Yang, Y. L., and Jacobson, A.J. to be publishedGoogle Scholar
12. Fullarton, I. C., Kilner, J. A., Steele, B. C. H. and Middleton, P. H., Proceedings of the Second International Symposium on Ionic and Mixed Conducting Ceramics, Eds. by Ramanarayanan, T. A., Worrell, W.L. and Tuller, H. L., The Electrochemical Society, Pennington, NJ 1994, pp. 926.Google Scholar
13. Qiu, L., Lee, T. H., Liu, L. M., Yang, Y. L., and Jacobson, A. J., submitted for publication.Google Scholar
14. Pham, A. Q. and Jacobson, A. J., J. Electrochem. Soc. submitted for publication.Google Scholar
15. Etsell, T. H. and Flengas, S. N., J. Electrochem. Soc. 118, 1890 (1971).Google Scholar
16. Pham, A.Q. and Jacobson, A.J. unpublished.Google Scholar