Skip to main content Accessibility help

Study of Ni(Pt) germanosilicides formation on fully-strained Si0.9Ge0.1 and Si0.899Ge0.1C0.001 by Raman Spectroscopy

  • J. Y. Y. Chaw (a1), K. L. Pey (a1), P. S. Lee (a2), D. Z. Chi (a3) and J. P. Liu (a4)...


In this work, Raman spectroscopy was used to study the reaction of pure Ni and Ni(Pt 5 at. %) with fully-strained Si0.9Ge0.1 and Si0.899Ge0.1C0.001. With pure Ni, it was found that the incorporation of 0.1% C in the substrate resulted in out-diffusion of Ge from the germanosilicide film at a lower rapid thermal annealing (RTA) temperature compared to that of pure Ni on Si0.9Ge0.1. This Ge out-diffusion phenomenon is evident from the gradual shift in the NiSi1-wGew (wx) Raman peak from ∼213 cm−1 to higher wavenumbers, closer to 217 cm−1 as reported for pure Ni/Si, indicating that Ge is being depleted from the film with increasing RTA temperatures. In addition, it was found that severe agglomeration of the germanosilicide film occurred at a lower RTA temperature for the Ni/Si0.899Ge0.1C0.001 system. This corresponds to the observations from the Raman spectra, where a sharp increase in the Si substrate peak at 520 cm−1 was observed, coupled with the appearance of the transverse acoustic (TA)-phonon peak of Si at 301 cm−1. When Pt was introduced into the Ni film, significant improvements were observed for the germanosilicide films on Si0.9Ge0.1 and Si0.899Ge0.1C0.001 substrates, both in terms of Ge out- diffusion and agglomeration. Initial findings show that the addition of Pt promotes the formation of the low resistivity mono-germanosilicide phase at temperatures as low as 300°C.



Hide All
1. Iwai, H., Ohguro, T. and Ohmi, S., Microelectronics Engineering, 60, 157 (2002).
2. Xiang, Q., Goo, J.-S., Pan, J., Yu, B., Ahmed, S., Zhang, J. and Lin, M.-R., VLSI Tech. Digest, 101 (2003).
3. Maiti, C. K., Chakrabarti, N. B. and Ray, S. K. (eds.), Strained silicon heterostructures: materials and devices, (Institution of Electrical Engineers, 2001) pp. 6061.
4. Zhang, S.-L., Microelectronics Engineering, 70, 174 (2003).
5. Lee, P. S., Pey, K. L., Mangelinck, D., Ding, J., Osipowicz, T. and See, A., Electrochem. Solid-State Lett., 5, G15 (2002).
6. Zhao, H. B., Pey, K. L., Choi, W. K., Chattopadhyay, S., Fitzgerald, E. A., Antoniadis, D. A. and Lee, P. S., J. Appl. Phys., 92, 214 (2002).
7. Hallstedt, J., Blomqvist, M., Persson, P. O. A., Hultman, H. and Radamson, H. H., J. Appl. Phys., 95, 2397 (2004).
8. Lee, P. S., Mangelinck, D., Pey, K. L., Shen, Z. X., Ding, J., Osipowicz, T. and See, A., Electrochem. Solid-State Lett., 3, 153 (2000).
9. Perez-Rodriguez, A., Roca, E., Jawhari, T., Morante, J. R. and Schreutelkamp, R. J., Thin Solid Films, 251, 45 (1994).
10. Pey, K. L., Choi, W. K., Chattopadhyay, S., Zhao, H. B., Fitzgerald, E. A., Antoniadis, D. A. and Lee, P. S., J. Vac. Sci. Technol. A, 20, 1903 (2002).
11. Seger, J., Zhang, S.-L., Mangelinck, D. and Radamson, H. H., Appl. Phys. Lett., 81, 1978 (2002).
12. Ottaviani, G., Tu, K. N., Chu, W. K., Hung, L. S. and Mayer, J. W., J. Appl. Phys., 53, 4903 (1982).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed