Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T17:01:16.441Z Has data issue: false hasContentIssue false

Study of Mo selenisation process on different Mo substrates

Published online by Cambridge University Press:  31 January 2011

Liina Kaupmees
Affiliation:
liina3112@staff.ttu.ee, Tallinn University of Technology, Materials Science, Ehitajate tee 5, Tallinn, Harjumaa, 19086, Estonia, +3726203362
Mare Altosaar
Affiliation:
altosaar@staff.ttu.ee, Tallinn University of Technology, Materials Science, Tallinn, Harjumaa, Estonia
Olga Volobujeva
Affiliation:
v.olga@staff.ttu.ee, Tallinn University of Technology, Materials Science, Tallinn, Harjumaa, Estonia
Paul Barvinschi
Affiliation:
pbarvi@physics.uvt.ro, West University of Timisoara, Faculty of Physics, Timisoara, Romania
Get access

Abstract

In the present work we studied the influence of selenisation temperature, Se vapour pressure and duration of the process on the properties of MoSe2 layer formed on Mo-foil and on sputtered Mo layers on soda lime and Mo-on-ITO glasses. We found that MoSe2 layer thickness (dL) on Mo-foil depended linearly on selenisation time. The thickness of MoSe2 layer on Mo-foil (dL) depended on Se vapour pressure as a function , where n ≈ 0.5. The same dependence was also found for sputtered Mo layers in low Se vapour pressure region of 13 – 133 Pa. MoSe2 layer thickness depended on the origin of Mo layer which is related with the density of Mo layer: MoSe2 on Mo foil was thicker than on sputtered Mo. All the MoSe2 layers were full of cracks if Se vapour pressure was higher than 1333 Pa. All tested MoSe2 layers showed p-type conductivity.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matson, R. J. Jamjoum, O. Buonaquisti, A. D. Russell, P. E. Kazmerski, L. L. Sheldon, P. and Ahrenkiel, R. K. Solar Cells 11, 301305 (1984).Google Scholar
2. Jaegermann, W. Löher, T. and Pettenkofer, C. Cryst. Res. Technol. 31, 273(1996).Google Scholar
3. Wada, T. Kohara, N. Nishiwaki, S. Negami, T. Thin Solid Films 387, 118122 (2001).Google Scholar
4. Würz, R., Marron, D. Fuertes, Meeder, A. Rumberg, A. Babu, S. M. Niedrig, Th.S., Bloeck, U. Schubert-Bischoff, P., Lux-Steiner, M. Ch., Thin Solid Films 431–432, 398(2003).Google Scholar
5. Assmann, L.. Bernde, J. C., Drici, A. Amory, C. Halgand, E. Morsli, M. Appl. Surface Science 246, 159166 (2005).Google Scholar
6. Rostan, P. J. Mattheis, J. Bilger, G. Rau, U. Werner, J. H. Thin Solid Films 480-481, 6770 (2005).Google Scholar
7. Jäger-Waldau, A., Lux-Steiner, M., Jäger-Waldau, R., Burkhardt, R. and Bucher, E. Thin Solid Films 189, 339345 (1990).Google Scholar
8. Mallouky, A. and Bernede, J. C. Thin Solid Films 158, 285298 (1988).Google Scholar
9. Bernede, J. C. A. Mallouky and Pouzet, J. Materials Chemistry and Physics 20, 201214 (1988); J.C. Bernede, J. Pouzet and Z. K. Alaoui Appl. Phys. A 51, 155-159 (1990).Google Scholar
10. Abou-Ras, D., Kostorz, G., Bremaud, D., Kälin, M., Kurdesau, F. V. Tiwari, A. N. Döbeli, M., Thin Solid Films 480-481, 433438 (2005).Google Scholar
11. Gerasimov, Ya. I, Krestovnikov, A. N. Gorbov, S. I. Chimicheskaja termodynamica v cvetnoi metallurgii. Izdatelstvo Metallurgija, Moskva, (1974) p. 23.Google Scholar