Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-20T19:59:40.024Z Has data issue: false hasContentIssue false

Study of KTN Thin Films of Variable Composition grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  10 February 2011

F. E. Fernandez
Affiliation:
Department of Physics, University of Puerto Rico, Mayagüez, PR 00681-9016
M. Pumarol
Affiliation:
Department of Physics, University of Puerto Rico, Mayagüez, PR 00681-9016
P. Marrero
Affiliation:
Department of Physics, University of Puerto Rico, Mayagüez, PR 00681-9016
E. Rodriguez
Affiliation:
Department of Physics, University of Puerto Rico, Mayagüez, PR 00681-9016
H. A. Mourad
Affiliation:
Department of Physics, University of Puerto Rico, Mayagüez, PR 00681-9016
Get access

Abstract

Potassium niobate tantalate (KTN) thin films of a range of compositions were grown by pulsed laser deposition onto (100) MgO substrates. Three-segment targets were used including KTaO3, KNbO3, and KNO3. Resulting films were well oriented with the substrates, with the “cubic” (h00) peaks positions shifting with Nb content to that of the (hh0) orthorhombic KNbO3 peak.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shirane, G., Pepinsky, R., and Frazer, B.C.; Acta Crystallogr. 9 (1956) 131.Google Scholar
2. Hewatt, A.W.; J. Phys. C: Solid State Phys., 6 (1973) 2559.Google Scholar
3. Höchli, U.T., Weibel, H.E., and Boatner, L.A.; Phys. Rev. Lett., 39 (1977) 1158.Google Scholar
4. Höchli, U.T. and Boatner, L.A.; J. Phys. C: Solid State Phys., 10 (1977) 4319.Google Scholar
5. Rytz, D. and Scheel, H.J.; J. Crystal Growth, 59 (1982) 468.Google Scholar
6. Toulouse, J. et al.; Phys. Rev. B 43 (1991) 8297.Google Scholar
7. Triebwasser, S., Phys. Rev. 101 (1956) 993.Google Scholar
8. Xu, Y., Ferroelectric Materials and Their Applications, North-Holland / Elsevier Science Publishers, Amsterdam (1991).Google Scholar
9. Chen, F.S. et al.; J. Appl. Phys., 37 (1966) 388.Google Scholar
10. Boatner, L.A., Krätzig, E., and Orlowski, R., Ferroelectrics 27 (1980) 247.Google Scholar
11. Hulliger, J., Gutman, R., and Wagli, P., Thin Solid Films 175 (1989) 201.Google Scholar
12. Yilmaz, S., Venkatesan, T., and Gerhard-Multhaupt, R., Appl. Phys. Lett. 58 (1991) 2479.Google Scholar
13. Cotell, C.M. and Leuchtner, R.E., Mat. Res. Soc. Symp. Proc. 285 (1993) 367.Google Scholar
14. Hirano, S. et al., J. Am. Ceram. Soc. 75 (1992) 1701.Google Scholar
15. Nazeri, A. et al., J. Am. Ceram. Soc. 75 (1994) 2450.Google Scholar
16. Marrero, P.J., Thesis, University of Puerto Rico, Mayagüez (1995).Google Scholar
17. Christen, H.-M., Norton, D.P., Géa, L.A., and Boatner, L.A.. To be published in Thin Solid Films (1997).Google Scholar
18. Chow, A.F. et al., Appl. Phys. Lett. 65 (1994) 1073.Google Scholar
19. Kim, S., Kang, Y., and Baik, S., in Ferroic Materials, edited by Bhalla, A.S., Nair, K.M., Lloyd, I.K., Yanagida, H., and Payne, D.A. (Ceramic Transactions 43, Westerville, Ohio, 1994), p. 37.Google Scholar
20. Chow, A.F., Lichtenwalner, D.J., Woolcott, R.R., Graettinger, T.M., Auciello, O., Boatner, L.A., and Parikh, N.R., Appl. Phys. Lett. 65 (1994) 1073.Google Scholar