Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T10:28:28.163Z Has data issue: false hasContentIssue false

Study of Growth and Characterization of Fe-Catalyzed β-Ga2O3 Nanowires

Published online by Cambridge University Press:  18 May 2015

Sudheer Kumar
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
C. Tessarek
Affiliation:
Max Planck Institute for the Science of Light, Günther-Scharowsky-Straβe 1, 91058 Erlangen, Germany
A. Hähnel
Affiliation:
Max Planck Institute of Micro structure Physics, Weinberg 2, D-06120 Halle, Germany
S. Christiansen
Affiliation:
Max Planck Institute for the Science of Light, Günther-Scharowsky-Straβe 1, 91058 Erlangen, Germany Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner Platz 1, 14109 Berlin, Germany
R. Singh
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
Get access

Abstract

In the present study, Fe as a catalyst was used to grow single crystalline monoclinic gallium oxide (β-Ga2O3) nanowires using chemical-vapor-deposition method. The morphology, structure and luminescence properties of the as-grown β-Ga2O3 nanowires were investigated using various characterization techniques. The diameter of the as-grown nanowires was in the range of 50 to 100 nm, and the lengths up to tens of micrometers. The structural investigation of the nanowires was carried out using X-ray diffraction that showed monoclinic phase of Ga2O3. Further, the transmission electron microscope (TEM) investigations along with selected area diffraction pattern revealing single crystalline nature of the nanowires. The as-grown β-Ga2O3 nanowires had preferred orientation along [1-1-1] direction. The high resolution TEM image showed regular arrangement of atoms and the lattice spacing between (1-1-1) planes was around 0.266 nm. The luminescence properties of the as-grown nanowires were measured using cathodoluminescence (CL) spectroscopy. The CL measurements of β-Ga2O3 nanowires revealed a strong broad UV-blue emission band and a weak red emission band.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Galazka, Z., Uecker, R., Irmscher, K., Albrecht, M., Klimm, D., Pietsch, M., Brutzam, M., Bertram, R., Ganschow, S. and Fornari R, R., Cryst. Res. Technol. 45, 1229–36 (2010).CrossRefGoogle Scholar
Kumar, S. and Singh, R., Rhys. Status Solidi RRL 7, 781–92 (2013).CrossRefGoogle Scholar
Edwards, D. D., Mason, T. O., Goutenoir, F. and Peoppel, K. R., Appl. Phys. Lett. 70 1706 (1997).CrossRefGoogle Scholar
Shan, F. K., Liu, G. X., Lee, W. J., Lee, G. H., Kim, I. S. and Shin, B. C., J. Appl. Phys. 98 023504 (2005).CrossRefGoogle Scholar
Fleischer, M., Kornely, S., Weh, T., Frank, J. and Meixner, H., Sensor Actual B-Chem. 69, 205210 (2000).CrossRefGoogle Scholar
Kumar, S., Sarau, G., Tessarek, C., Bashouti, Muhammad Y., Hahnel, A., Christiansen, S. and Singh, R., J. Phys. D: Appl. Phys. 47, 435101 (2014).CrossRefGoogle Scholar
Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 8990 (1964).CrossRefGoogle Scholar
Han, X. Y., Gao, Y. H. and Zhang, X. H., Nano-Micro Lett. 1(3), 0408 (2009).CrossRefGoogle Scholar
Kumar, S., Tessarek, C., Christiansen, S. and Singh, R., J. Alloys Comp. 587, 812818 (2014).CrossRefGoogle Scholar
Guzman-Navarro, G., Herrera-Zaldivar, M., Valenzuela-Benavides, J. and Maestre, D. 2011 J. Appl. Phys. 110, 034315 (2011).CrossRefGoogle Scholar
Kumar, S., Tessarek, C., Sarau, G., Christiansen, S. and Singh, R., Adv. Eng. Mater. (2014) [DOI: 10.1002/adem.201400289].Google Scholar
Song, Y. P., Zhang, H. Z., Lin, C., Zhu, Y. W., Li, G. H., Yang, F. H. and Yu, D. P., Phys. Rev. B 69, 075304 (2004).CrossRefGoogle Scholar
Kumar, S., Kumar, V.; Singh, T., Hahnel, A. and Singh, R., J. Nanopart. Res. 16, 2189-12189-9 (2014).Google Scholar