Skip to main content Accessibility help
×
Home

Study of Crystallinity in μc-Si:H Films Deposited by Cat-CVD for Thin Film Solar Cell Applications

  • Cheng-Hang Hsu (a1), Yi-Peng Hsu (a2), Fang-Hong Yao (a3), Yen-Tang Huang (a4), Chuang-Chuang Tsai (a5), Hsiao-Wen Zan (a6), Chien-Chung Bi (a7), Chun-Hsiung Lu (a8) and Chih-Hung Yeh (a9)...

Abstract

The crystallinity of the hydrogenated microcrystalline silicon (μc-Si:H) film was known to influence the solar cell efficiency greatly. Also hydrogen was found to play a critical role in controlling the crystallinity. Instead of employing conventional plasma deposition techniques, this work focused on using catalytic chemical vapor deposition (Cat-CVD) to study the effect of hydrogen dilution and the filament-to-substrate distance on the crystallinity, deposition rate, microstructure factor and electrical property of the μc-Si:H film. We found that the substrate material and structure can affect the crystallinity of the μc-Si:H film and the incubation effect. Comparing bare glass, TCO-coated glass, a-Si:H-coated glass and μc-Si:H-coated glass, the microcrystalline phase grows the fastest onto μc-Si:H surface, but the slowest onto a-Si:H surface. Surprisingly, the template effect lasted for more than a thousand atomic layers of silicon.

Copyright

References

Hide All
1 Meier, J., Dubail, S., Platz, R., Torres, P., Kroll, U., Selvan, J. A. Anna, Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H., Flückiger, R., Shah, A., Shklover, V. and Ufert, K.-D., Sol. En. Mat. Sol. Cells, 49, 35 (1997).
2 Wang, F., Liu, H. N., He, Y. L., Schweiger, A., and Schwarz, R., J. Non-Cryst. Solids, 137&138, 511 (1991).
3 Collins, R.W., Ferlauto, A.S., Ferreira, G.M., Chen, C., Koh, J., Koval, R.J., Lee, Y., Pearce, J.M. and Wronski, C.R., Sol. En. Mat. Sol. Cells, 78, 143 (2003).
4 Meillaud, F., Vallat-Sauvain, E., Niquille, X., Dubey, M., Bailat, J., Shah, A. and Ballif, C., Proc. 31 th IEEE Photovoltaic Specialist Conf., 1412 (2005).
5 Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett., 31, 292 (1977).
6 Spanakis, E., Stratakis, E., Tzanetakis, P. and Wang, Q., J. Appl. Phys., 89, 4294 (2001)
7 Mahan, A. H. and Vanecek, M., AIP Conf. Proc., 234, 195 (1991)
8 Wang, Q., Thin Solid Films, 517, 3570 (2009).
9 Ross, C., Mai, Y., Carius, R. and Finger, F., Mater. Res. Soc. Symp. Proc., 862, A10.4 (2005)
10 Cabarrocas, P.R., Layadi, N., Heitz, T., and Drevillon, B., Appl. Phys. Lett., 66, 3609 (1995).
11 Tsai, C.C., Anderson, G.B., Thompson, R., and Wacker, B., J. Non-Cryst. Solids, 114, 151 (1989).
12 Klein, S., Finger, F., Carius, R. and Lossen, J., Thin Solid Films, 501, 43 (2006).
13 Gallagher, A., Thin Solid Films, 395, 25 (2001).
14 Feenstra, K. F., Schropp, R. E. I., and Weg, W. F. Van der, J. Appl. Phys., 85, 6843 (1999).
15 Mai, Y., Klein, S., Carius, R., Wolff, J., Lambertz, A., Finger, F. and Geng, X., J. Appl. Phys., 97, 114913 (2005).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed