Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-21T02:15:15.524Z Has data issue: false hasContentIssue false

Studies of Interface Mixing in a Symmetrically Strained Ge/Si Superlattice

Published online by Cambridge University Press:  25 February 2011

R. C. Bowman
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
P. M. Adams
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
S. J. Chang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
V. Arbet
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
K. L. Wang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
Get access

Abstract

Raman scattering and x ray diffraction were used to study the effects of annealing on a Ge/Si superlattice that had been grown upon a Ge0.4Si0.6 alloy buffer layer which distributes the strain between the layers. Anneals above 910K caused substantial mixing at the Ge-Si interfaces. The interdiffusion coefficients obtained from the x-ray data were found to obey an Arrhenius relation with an activation energy of 3.1±0.2eV. Initial intermixing seems to be dominated by the diffusion of Si atoms into the Ge layers via a vacancy mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kasper, E., Herzog, H. J., Jorke, H. and Abstreiter, G., Mat. Res. Soc. Symp. Proc., 102, 393, (1988)Google Scholar
[2] Kasper, E., Kibble, H., Jorke, H., Brugger, H., Friess, E. and Abstreiter, G., Phys. Rev. B., 38, 3599, (1988)Google Scholar
[3] Chang, S. J., Huang, C. F., Kallel, M. A., Wang, K. L., Bowman, R. C. Jr, and Adams, P. M., Appl. Phys. Lett., 53, 1835, (1988)Google Scholar
[4] Chang, S. J., Arbet, V., Wang, K. L., Kallel, M. A., Bowman, R. C. Jr, and Adams, P. M., Symp. Proc. SPIE, 1055, (In Press)Google Scholar
[5] Menedez, J., Pinczuk, A., Bevk, J. and Mannaerts, P., J. Vac. Sci. Technol. B, 6, 1306, (1988)Google Scholar
[6] Iyer, S. S., Tsang, J. C., Copel, M. W., Pukite, P. R. and Tromp, R. M., Appl. Phys. Lett., 54, 219, (1988)Google Scholar
[7] Brugger, H., Friess, E., Abstreiter, G., Kasper, E. and Kibble, H., Semicond. Sci. Technol., 3, 1166, (1988)CrossRefGoogle Scholar
[8] Chang, S. J., Wang, K. L., Bowman, R. C. Jr, and Adams, P. M., Appl. Phys. Lett., 54, 1235, (1989)Google Scholar
[9] Hollander, B., Mantl, S., Stritzker, B., Jorke, H. and Kasper, E., J. Mater. Res., 4, 163, (1989)Google Scholar
[10] Cardona, M., Superlatt. Microstr., 5, 27, (1989)Google Scholar
[11] Ospelt, M., Bacsa, W., Henz, J., Mader, K. A. and Kanel, H. von, Superlatt. Microstr., 5, 71, (1989)Google Scholar
[12] Greer, A. L. amd Spaepen, F., in Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic Press, New York, 1985) p.419.Google Scholar
[13] Prokes, S. M. and Spaepen, F., Appl. Phys. Lett., 47, 234, (1985)Google Scholar
[14] Frank, W., Gosele, U., Mehrer, H. and Seeger, A., in Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowich, A. S. (Academic Press, New York, 1984) p.63.Google Scholar
[15] Raisanen, J., Hirvonen, J. and Anttila, A., Solid State Elec., 24, 333, (1981)Google Scholar
[16] McVay, G. L. and Ducharme, A. R., Phys. Rev. B, 9, 627, (1974); G. L. McVay and A. R. Ducharme, Inst. Phy. Conf. Ser., 23, 91, (1975)Google Scholar
[17] Phillips, J. and VanVechten, J. A., Phys. Rev. Lett., 30, 220, (1972); T. Soma and A. Morita, J. Phys. Soc. Japan, 32, 357, (1972)Google Scholar
[18] Cook, H. E. and Hilliard, J. E., J. Appl. Phys., 40, 2191, (1969)Google Scholar