Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T02:34:52.007Z Has data issue: false hasContentIssue false

Structure-Property Relationships in Organic Nonlinear Optical Materials

Published online by Cambridge University Press:  10 February 2011

Eric M. Breitung
Affiliation:
Department of Chemistry, University of Wisconsin, Madison, WI 53706-1369, breitung@students.wisc.edu
Robert J. McMahon
Affiliation:
Department of Chemistry, University of Wisconsin, Madison, WI 53706-1369, mcmahon@chem.wisc.edu
Get access

Abstract

Tuning the degree of bond-length alternation in organic nonlinear optical materials is a powerful paradigm for the design of organic materials with large molecular hyperpolarizabilities (β). Several research groups have employed this paradigm in the design and synthesis of NLO materials incorporating donor-acceptor polyenes. Increased bond-length alternation in polyenes leads to decreased barriers to rotation about C=C bonds and, hence, increased conformational flexibility. Since the degree of bond-length alternation is solvent dependent, so is the degree of conformational flexibility. In an effort to probe the influence of conformational flexibility on NLO response, we synthesized a series of simple donor-acceptor polyenes that are either conformationally flexible (la, 2a, 3a) or rigid (1b, 2b, 3b). For each pair of molecules ZINDO sum-over-states calculations predict a larger value of βμ, for the conformationally flexible isomer, but EFISH measurements (CHCl3) display mixed results. Various explanations for this behavior will be considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lindsay, G. A. and Singer, K. D., Polymers for Second-Order Nonlinear Optics (ACS, Washington, DC, 1995).Google Scholar
2 Dagani, R., Chemical & Engineering News 74 (10), 2227 (1996).Google Scholar
3 Marder, S. R., Kippelen, B., Jen, A. K. Y., and Peyghambarian, N., Nature 388 (6645), 845851 (1997).Google Scholar
4 Verbiest, T., Houbrechts, S., Kauranen, M., Clays, K., and Persoons, A., J. Mater. Chem. 7 (11), 21752189 (1997).Google Scholar
5 Marder, S. R., Cheng, L. T., Tiemann, B. G., Friedli, A. C., Blanchard-Desce, M., Perry, J. W., and Skindhoj, J., Science 263 (5146), 511514 (1994).Google Scholar
6 Albert, I. D. L., Marks, T. J., and Ratner, M. A., J. Phys. Chem. 100 (23), 97149725 (1996).Google Scholar
7 Meyers, F., Marder, S. R., Pierce, B. M., and Bredas, J. L., Chem. Phys. Lett. 228 (1-3), 171176 (1994).Google Scholar
8 Marder, S. R., Gorman, C. B., Meyers, F., Perry, J. W., Bourhill, G., Bredas, J. L., and Pierce, B. M., Science 265 (5172), 632635 (1994).Google Scholar
9 Pappalardo, R. R., Marcos, E. S., Ruizlopez, M. F., Rinaldi, D., and Rivail, J. L., J. Am. Chem. Soc. 115 (9), 37223730 (1993).Google Scholar
10 Chiara, J. L., Gomezsanchez, A., and Bellanato, J., J. Chem. Soc., Perkin Trans. 2 (5), 787798 (1992).Google Scholar
11 Frequency-dependent hyperpolarizabilities were computed from the AM 1 geometries using the ZINDO sum-over-states program (1907 nm, summed over the lowest 45 excited states using single pair excitations from the highest 12 occupied orbitals into the lowest 12 unoccupied orbitals.) (ZINDO, version 96.0 / 4.0.0, Biosym/MSI, San Diego CA, 1996).Google Scholar
12 MOPAC version 6.0, Quantum Chemistry Program Exchange (QCPE #455), Department of Chemistry, Indiana University, Bloomington, Indiana.Google Scholar
13 Marder, S. R., Gorman, C. B., Tiemann, B. G., and Cheng, L. T., J. Am. Chem. Soc. 115 (7), 30063007 (1993).Google Scholar
14 Kowalski, C. J. and Fields, K. W., J. Org. Chem. 46, 197201 (1981).Google Scholar
15 Malhotra, S. and Whiting, M. C., J. Chem. Soc., 3812–3822 (1960).Google Scholar
16 Nikolajewski, H. E., Dahne, S., and Hirsch, B., Chem. Ber. 100, 26162619 (1967).Google Scholar
17 Friedli, A. C., Yang, E., and Marder, S. R., Tetrahedron 53 (8), 27172730 (1997).Google Scholar
18 Previous EFISH values for 4-nitroaniline: βμ, = 9.2 × 10-30 cm5 esu-1 in acetone,19 10 × 10-30 cm-5 esu-1 in N-methyl-2-pyrrolidinone, 20 9.6 × 10-30 cm5 esu-1 in 1,4-dioxane.21 Google Scholar
19 Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G., and Marder, S. R., J. Phys. Chem. 95 (26), 1063110643 (1991).Google Scholar
20 Cheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G., and Spangler, C. W., J. Phys. Chem. 95 (26), 1064310652 (1991).Google Scholar
21 Teng, C. C. and Garito, A. F., Phys. Rev. B 28, 67666773 (1983).Google Scholar