Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T23:05:36.431Z Has data issue: false hasContentIssue false

Structure of Thermally-Induced Microdefects in Czochralski Silicon

Published online by Cambridge University Press:  21 February 2011

F. A. Ponce*
Affiliation:
Hewlett-Packard Laboratories, Palo Alto, California 94304.
S. Hahn
Affiliation:
Siltec Corporation, Mountain View, California 94043
*
*) Present address: Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA.
Get access

Abstract

The process of oxygen precipitation in Czochralski silicon materials has been studied using high resolution transmission electron microscopy. The resulting structure depends strongly on the thermal history of the material. The initial stages of precipitation involve the formation of clusters exhibiting strain fields which are coherent and isotropic at intermediate temperatures (∼7000°C). Incoherent defects are formed when the interstitial oxygen precipitates into substitutional sites in the silicon lattice. For long-time anneals, the quasi-equilibrium defect structure ranges from needle-like coesite (450–600°C), silica platelets (600–1000°C) to polyhedral silica precipitates (900–1200°C).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de Kock, A. J. R., 1976 Crystal Growth and Materials, Kaldis, E. and Scheel, H. J., eds. (North Holland, Amsterdam, 1977) p. 662.Google Scholar
2. Hu, S. M., J. Vacuum Sci. Technol. 14, 17 (1977).CrossRefGoogle Scholar
3. Tan, T. Y. and Tice, W. K., Philos. Mag. 34, 615 (1076).CrossRefGoogle Scholar
4. Maher, D. M., Staudinger, A., and Patel, J. R., J. Appl. Phys. 47, 3813 (1976).CrossRefGoogle Scholar
5. Tempelhoff, K., Spiegelber, F., Gleichmann, R., and Wruck, D., Phys. Status Solidi A 26, 213 (1979).CrossRefGoogle Scholar
6. Ponce, F. A., Yamashita, T., and Hahn, S., Defects in Silicon, Bullis, W. M. and Kimmerling, L. C., eds. (Electrochemical Soc., Pennington, NJ, 1983), pp. 105114.Google Scholar
7. Ponce, F. A., Yamashita, T., and Hahn, S., Appl. Phys. Lett. 43, 1051 (1983)..CrossRefGoogle Scholar
8. Tiller, W. A., Hahn, S. and Ponce, F. A., J. Electrochem. Soc. (to be published).Google Scholar
9. Ashby, M. F. and Brown, M., Phil. Mag. 8, 1083 and 1649 (1963).Google Scholar
10. Tempelhoff, K. and Spiegelberg, F., Semiconductor Silicon, Huff, H. and Sirtl, E., eds. (Electrochemical Soc., Pennington, NJ, 1977), pp. 585595.Google Scholar
11. Bourret, A., Thibault-Desseaux, J. and Seidman, D. N., J. Appl. Phys. 55, 825 (1984).CrossRefGoogle Scholar