Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T04:21:29.367Z Has data issue: false hasContentIssue false

Structure and Thermoelectric Properties of New Quaternary Tin and Lead Bismuth Selenides, K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1+xSn5-xBi11+xSe22

Published online by Cambridge University Press:  01 February 2011

Antje Mrotzek
Affiliation:
Department of Chemistry, Michigan State University, East Lansing, MI 48824.
Kyoung-Shin Choi
Affiliation:
Department of Chemistry, Michigan State University, East Lansing, MI 48824.
Duck-Young Chung
Affiliation:
Department of Chemistry, Michigan State University, East Lansing, MI 48824.
Melissa A. Lane
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL.
John R. Ireland
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL.
Paul W. Brazis
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL.
Tim Hogan
Affiliation:
Department of Electrical Engineering, Michigan State University, East Lansing, MI 48824.
Carl R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL.
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry, Michigan State University, East Lansing, MI 48824.
Get access

Abstract

We present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] (a) Thermoelectric Materials 1998 - The Next Generation Materials for Small-Scale Refrigeration and Power Applications edited by Tritt, T. M., Kanatzidis, M. G., Mahan, G. D., Lyon, H. B., Mat. Res. Soc. Symp. Proc. 1998, 545.Google Scholar
(b) Thermoelectric Materials – New Directions and Approaches edited by Tritt, T. M., Kanatzidis, M. G., Lyon, H. B., Mahan, G. D., Mat. Res. Soc. Symp. Proc. 1998, 478.Google Scholar
[2] CRC Handbook of Thermoelectrics, edited by Rowe, D. M., CRC Press, Boca Raton 1995 Google Scholar
[3] (a) Slack, G. A. in CRC Handbook of Thermoelectrics, edited by Rowe, D. M., CRC Press, Boca Raton 1995, 407.Google Scholar
(b) Slack, G. A. in Solid State Physics edited by Ehrenreich, H., Seitz, F., Turnbull, D., Academic: New York 1997, 34, 1.Google Scholar
(c) Sales, B. C., Mater. Res. Bull. 1998, 23, 15.Google Scholar
(d) Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V., Thompson, J. R., Phys. Rev. B. 1997, 56, 15081.Google Scholar
(e) Tritt, T. M., Scienc. 1996, 272, 1276.Google Scholar
(f) Kanatzidis, M. G., DiSalvo, F. J., ONR Quarterly Review 1996, XXVII, 14.Google Scholar
[4] (a) Jeon, H.-H., Ha, H.-P., Hyun, D.-B., Shim, J.-D. J. Phys. Chem. Solid. 1991, 4, 579.Google Scholar
(b) Testardi, L. R., Bierly, J. N. Jr., Donahoe, F. J. J. Phys. Chem. Solid. 1962, 23, 1209.Google Scholar
(c) Champness, C. H., Chiang, P. T., Parekh, P. Can. J. Phys. 1965, 43, 653.Google Scholar
(d) Champness, C. H., Chiang, P. T., Parekh, P. Can. J. Phys. 1967, 45, 3611.Google Scholar
(e) Vedernikov, M. V., Kutasov, V. A., Lukyanova, L. N., Konstantinov, P. P. Proc. Of the XVIth Int. Conf. On Thermoelectrics (ITC '97), Dresden, Germany 1997, 56.Google Scholar
(f) Stordeur, M. in CRC Handbook of Thermoelectrics, edited by Rowe, D. M., CRC Press, Boca Raton 1995, 239.Google Scholar
[5] Chung, D.-Y.,, Iordanidis, L., Choi, K.-S., Kanatzidis, M. G., Bull. Korean Chem. Soc., 1998, 19, 1283.Google Scholar
[6] Chung, D.-Y., Jobic, S., Hogan, T., Kannewurf, C. R., Brec, R., Kanatzidis, M. G., J. Am. Chem. Soc. 1997, 119, 2505.Google Scholar
[7] (a) Kanatzidis, M. G., McCarthy, T. J., Tanzer, T. A., Chen, L.-H., Iordanidis, L., Hogan, T., Kannewurf, C. R., Uher, C., Chen, B., Chem. Mater. 1996, 8, 1465.Google Scholar
(b) Chen, B., Uher, C., Iordanidis, L., Kanatzidis, M. G., Chem. Mater. 1997, 9, 1655.Google Scholar
[8] Kanatzidis, M. G., Chung, D.-Y., Iordanidis, L., Choi, K.-S., Brazis, P., Rocci, M., Hogan, T., Kannewurf, C., Mat. Res. Soc. Symp. Proc. 1998, 545, 233 Google Scholar
[9] Chung, D.-Y., Choi, K.-S., Iordanidis, L., Schindler, J. L., Brazis, P. W., Kannewurf, C. R., Chen, B., Hu, S., Uher, C., Kanatzidis, M. G., Chem. Mater. 1997, 9, 3060.Google Scholar
[10] Chung, D.-Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C. R., Bastea, M., Uher, C., Kanatzidis, M. G., Scienc. 2000, 287, 1024.Google Scholar
[11] Chung, D.-Y., Choi, K.-S., Brazis, P. W., Kannewurf, C. R., Kanatzidis, M. G., Mat. Res. Soc. Symp. Pro. 1998, 545, 65.Google Scholar
[12] Choi, K.-S., Chung, D.-Y., Mrotzek, A., Brazis, P., Kannewurf, C. R., Uher, C., Chen, W., Hogan, T., Kanatzidis, M. G. Chem. Mater. submitted. Google Scholar