Skip to main content Accessibility help

Structure and magnetic properties of 4H-SrMnO 3-δ (δ=0.0 and 0.18) nanoparticles synthesized by thermal decomposition of appropriate precursor

  • M. Parras (a1), I. N. González-Jiménez (a1), A. Torres-Pardo (a1), A. E. Sánchez-Pelaez (a1), A. Gutiérrez (a1), M. García-Hernández (a2), J. M. González-Calbet (a1) and A. Varela (a1)...


Stoichiometric 4H-SrMnO3.0 nanoparticles have been successfully synthesized for the first time from thermal decomposition of a new heterometallic precursor [SrMn(edta)(H2O)53/2H2O. From this precursor, highly homogeneous 4H-SrMnO3.0 nanoparticles with average particle size 70 nm are obtained. Local structural information, provided by atomically-resolved microscopy techniques, shows that 4H-SrMnO3.0 nanoparticles exhibit the same general structural features than the bulk material, although structural disorder, due to edge-dislocations, is observed. The nanometric size of particles enables a topotactic reduction process at low temperature stabilizing a metastable 4H-SrMnO2.82 phase. The oxygen deficiency is accommodated through extra cubic layers breaking the …hchc… 4H-sequence. These defect areas are Mn3+ rich as evidenced by high energy resolution EELS data. Magnetic characterization of nano-4H-SrMnO 3-δ shows significant variations with respect to the bulk material.



Hide All
1. Neagu, D.; Tsekouras, G; Miller, D.N.; Ménard, H. and Irvine, T.S. Nature Chem. 5, 2013, 916.
2. Spooren, J.; Walton, R. I. J. Solid State Chem. 2005, 178, 1683.
3. Zhu, J.; Liu, J.; Wang, H.; Zhu, M.; Yan, H. Cryst. Res. Technol. 2007, 42(3), 241.
4. Rizzuti, A.; Viviani, M.; Corradi, A.; Nanni, P.; Leonelli, C. Solid State Phen. 2007, 128, 21.
5. Gil de Muro, I.; Mautner, F.A.; Insausti, M.; Lezama, L.; Arriortua, M.I.; Rojo, , T. Inorg. Chem. 1998, 37, 3243.
6. González-Jiménez, I. N.; Torres-Pardo, A.; Sánchez-Pélaez, A. E.; Gutiérrez, Á.; García-Hernández, M; González-Calbet, J. M.; Parras, M,; Varela, Á. Chem. Mater. 2014, 26, 2256.
7. Battle, P.D.; Gibb, T.C.; Jones, C.W. J. Solid State Chem. 1988, 74(1), 60.
8. Wu, Y. C.; Ho, N. J.; Lu, H. Y.; J. Microsc. 2005, 220, 205.
9. Balakirev, V. F. and Golikov, Y. V. Inorg. Mater. 2006, 42(1), S49.
10. Chamberland, B. L.; Sleight, A. W.; Weiher, J. F. J. Solid State Chem. 1970, 1 (3−4), 506.
11. Dong, S.; Gao, F.; Wang, Z. Q.; Liu, J. M.; Ren, Z. F. Appl. Phys. Lett. 2007, 90, 082508.
12. Muroi, M.; McCormick, P. G.; Street, R. Rev. Adv. Mater. Sci. 2003, 5, 7681.
13. Markovich, V.; Fita, I.; Wisniewski, A.; Puzniak, R.; Mogilyansky, D.; Titelman, L.; Vradman, L.; Herskowitz, M.; Gorodetsky, G. Phys. Rev. B 2010, 81, 134440.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed