Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-23T22:36:49.806Z Has data issue: false hasContentIssue false

Structure and Growth of Small Palladium Clusters

Published online by Cambridge University Press:  01 January 1992

Y. S. Li
Affiliation:
Biosym Technologies, Inc., 9685 Scranton Road, San Diego, CA 92121
Y. Cai
Affiliation:
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855
J. M. Newsam
Affiliation:
Biosym Technologies, Inc., 9685 Scranton Road, San Diego, CA 92121
Get access

Abstract

We study the structure and growth sequence of small palladium clusters Pdn using the Many-Body Alloy (MBA) potential and simulated annealing techniques. Our results show the preference of compact polyhedral structures. These equilibrium structures are compared with the bulk Pd crystal in terms of cohesive energies and nearest neighbor distances. Both the cohesive energy and the nearest neighbor distance show a slow convergence to bulk behaviors. By analyzing the detailed structures and cohesive energies, we find that Pd4, Pd7 and Pd13 are magic number structures, which are the consequence of their high symmetry and large coordination number.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Microclusters, edited by Sugano, S., Nishina, Y., and Ohnishi, S. (Springer Verlag, New York, 1987).Google Scholar
2. NATO ASI Series B: Physics and Chemistry of Small Clusters, edited by Jena, P., Rao, B. K., and Khanna, S. N., volume 158 (Plenum Press, New York, 1987).Google Scholar
3. Elemental and Molecular Clusters, edited by Benedek, G., Martin, T. P., and Pacchioni, G. (Springer, New York, 1988).Google Scholar
4. Metal Clusters in Catalysis, edited by Gates, B. C., Guczi, L., and Knozinger, H. (Elsevier, New York, 1986).Google Scholar
5. Foils, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B, 33, 7983 (1986).Google Scholar
6. Jacobsen, K. W., Norskov, J. K., and Puska, M. J., Phys. Rev. B, 35, 7423 (1987).Google Scholar
7. Stave, M. S. and DePristo, A. E., J. Chem. Phys. 97, 3386 (1992).Google Scholar
8. Zhong, W., Li, Y. S., and Tomanek, D., Phys. Rev. B, 44, 13053 (1991).Google Scholar
9. Zhong, W., Cai, Y., and Tomanek, D., Phys. Rev. B, 46, 8099 (1992).Google Scholar
10. Zhong, W., Cai, Y., and Tomanek, D., to be published.Google Scholar
11. Kirkpatrick, S., Gellat, C. D., and Vecchi, M. P., Science 220, 671 (1983).Google Scholar
12. Vanderbilt, D. and Louie, S. G., J. Comput. Phys. 56, 259 (1984).Google Scholar
13. Martins, J., Buttet, J., and Car, R., Phys. Rev. Lett. 53, 655 (1984).Google Scholar
14. Phillips, J. C., Chem. Rev. 86, 619 (1986).Google Scholar
15. Parks, E. K., Winter, B. J., Klots, T. D., and Riley, S. J., J. Chem. Phys. 94, 1882 (1991).Google Scholar
16. Fayet, P., Kaldor, A., and Cox, D. M., J. Chem. Phys. 92, 254 (1990).Google Scholar