Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T07:58:42.088Z Has data issue: false hasContentIssue false

Structure and Characteristics of Few-layer Molybdenum Disulfide

Published online by Cambridge University Press:  22 May 2014

E. S. Reifler
Affiliation:
Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 15213, U.S.A.
N. T. Nuhfer
Affiliation:
Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 15213, U.S.A.
E. Towe
Affiliation:
Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 15213, U.S.A.
Get access

Abstract

Layered transition-metal dichalcogenides such as molybdenum disulfide are indirect band gap materials in their bulk form but become direct semiconductors when pared down to a single layer. This paper discusses the structural characteristics and properties of single and few-layer molybdenum disulfide. Specifically, we present aberration-corrected high-resolution transmission electron microscopy (HRTEM) investigations of the structural properties of this material. This information is augmented with data from Raman and photoluminescence spectroscopies on single and few-layer samples. High-resolution TEM images of few-layer and bulk molybdenum disulfide confirm a hexagonal structure for the material. Direct images, along with corresponding fast Fourier transforms, provide valuable information about the crystal structure and reciprocal space lattice of few-layer molybdenum disulfide. One can, for example, determine the in-plane lattice constants experimentally from analysis of the TEM images. Atomic force microscope topographic maps can yield the thickness of a monolayer of molybdenum disulfide; these maps can also be used to determine the thicknesses of multi-layered samples. Analysis of combined Raman and photoluminescence spectroscopy data are valuable in confirming the number of layers in molybdenum disulfide samples. Furthermore, the photoluminescence data can provide unique information on the nature of emission from monolayer molybdenum disulfide; it is characteristically different from that of few-layer samples. The spectral location of the monolayer peak emission agrees with what was obtained from theoretical calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., Nature Nano 6, 147 (2011).CrossRefGoogle Scholar
Xiao, D., Liu, G.B., Feng, W., Xu, X., and Yao, W., Phys Rev Lett. 108, 196802 (2012).CrossRefGoogle Scholar
Chang, H., Yang, S., Lee, J., Tao, L., Hwang, W., Jena, D., Lu, N., and Akinwande, D., ACS Nano 7 (6), 5446 (2013).CrossRefGoogle Scholar
Yoon, J., Park, W., Bae, G., Kim, Y., Soo Lang, H., Hyun, Y., Lim, S.K., Kahng, Y., Hong, W., Lee, B.H., and Ko, H.C., Small 9 (19), 3295 (2013).Google Scholar
Bertolazzi, S., Brivio, J., and Kis, A., ACS Nano 5 (12), 9703 (2011).CrossRefGoogle Scholar
Böker, Th., Severin, R., Müller, A., Janowitz, C., Manzke, R., Voβ, D., Krüger, P., Mazur, A., and Pollmann, J., Phys. Rev. B 64, 235305 (2001).CrossRefGoogle Scholar
Wilson, J.A. and Yoffe, A.D., Advances in Physics 18 (73), 193 (1969).CrossRefGoogle Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., and Wang, F., Nano Letters 10, 1271 (2010).CrossRefGoogle Scholar
Zhu, Z.Y., Cheng, Y.C., and Schwingenschlögl, U., Phys. Rev. B 84, 153402 (2011).CrossRefGoogle Scholar
Cheiwchanchamnangij, T. and Lambrecht, W.R.L., Phys. Rev. B 85, 205302 (2012).CrossRefGoogle Scholar
Molina-Sánchez, A., Sangalli, D., Hummer, K., Marini, A., and Wirtz, L., Phys. Rev. B 88, 045412 (2013).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K., PNAS 102 (30), 10451 (2005).CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., and Ryu, S., ACS Nano 4 (5), 2695 (2010).CrossRefGoogle Scholar
Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V., Science 331, 568 (2011).CrossRefGoogle Scholar
Verble, J.L. and Wieting, T.J., Solid State Commun. 11, 941 (1972).CrossRefGoogle Scholar
Viršek, M., Jesih, A., Milošević, I., Damnjanović, M., and Remškar, M., Surface Science 601, 2868 (2007).CrossRefGoogle Scholar
Windom, B.C., Sawyer, W.G., Hahn, D.W., Tribol. Lett. 42, 301 (2011).CrossRefGoogle Scholar
Wang, Y.Y., Ni, Z.H., Shen, Z.X., Wang, H.M., and Wu, Y.H., Appl. Phys. Lett. 92, 043121 (2008).CrossRefGoogle Scholar