Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T03:37:34.365Z Has data issue: false hasContentIssue false

Structural Studies Of (ZnSe/FeSe) Superlattices By Transmission Electron Microscopy

Published online by Cambridge University Press:  25 February 2011

K. Park
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742–2115
L. Salamanca-Riba
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742–2115
B. T. Jonker
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5000
Get access

Abstract

The structural properties of (ZnSe/FeSe) superlattices, grown with and without a ZnSe buffer layer on (001) G a As substrates by molecular beam epitaxy, have been studied by transmission electron microscopy. High quality (ZnSe/FeSe) superlattices are obtained when grown on a ZnSe buffer layer on (001) GaAs substrates. In contrast, nominal (ZnSe/FeSe) superlattices grown directly on (001) GaAs substrates without a buffer layer showed evidence for intermixing of the layers in the superlattice indicating that the superlattice is unstable. We observed a disordered structure and an ordered structure in the resulting Zn1−xFexSe solid solution. The ordered structure corresponds to chemical ordering of Zn and Fe atoms along the < 100 > and < 110 > directions. We have studied the effect of misfit strain in the (ZnSe/FeSe) superlattices on the film quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For a review article see for example Furdyna, J. K., and Kossut, J., in Semiconductors and Semimetals, (edited by Willardson, R. K. and Beer, A. C., Academic Press 25, San Diego, CA 1988) p. 1.Google Scholar
[2] Gunshor, R. L., Otsuka, N., Yamanishi, M., Kolodziejski, L. A., Bonsett, T. C., Bylsma, R. B., Datta, S., Becker, W. M., and Furdyna, J. K., J. Crystal Growth 72, 294 (1985).Google Scholar
[3] Kolodziejski, L. A., Gunshor, R. L., Otsuka, N., Gu, B. P., Hefetz, Y., and Nurmikko, A. V., Appl. Phys. Lett. 48, 1482 (1986).CrossRefGoogle Scholar
[4] Wyckoff, R. W. G., in Crystal Structures, (John Wiley & Sons 1, New York, NY, 1963) p. 124.Google Scholar
[5] Matthews, J. W., Blakeslee, A. E., J. Crystal Growth 27, 118 (1974).Google Scholar
[6] Swagten, H. J. M., Twardowski, A., de Jonge, W. J. M., and Demianiuk, M., Phys. Rev. B 39, 2568 (1989).CrossRefGoogle Scholar
[7] People, R. J., J. Appl. Phys. 59, 3296 (1986).Google Scholar
[8] Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. Technol. A 2, 436 (1984).Google Scholar
[9] Kleiman, J., and Park, R. M., J. Appl. Phys. 61, 2067 (1987).CrossRefGoogle Scholar
[10] Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).CrossRefGoogle Scholar
[11] Cahn, J. W., Acta. Met. 10, 179 (1962).Google Scholar
[12] Flynn, C. P., Phys. Rev. Lett. 57, 599 (1986).Google Scholar
[13] Nahory, R. E., Pollack, M. A., Beebe, E. D., DeWinter, J. C., and Ilegems, M., J. Elec-trochem. Soc: Electrochem. Sci. and Technol. 125, 1053 (1978).Google Scholar
[14] Salamanca-Riba, L., Park, K., and Jonker, B. T., Mat. Res. Soc. Symp. Proc. 231 (1991) (in press).Google Scholar
[15] Fiory, A. T., Bean, J.C., Hull, R., and Nakahara, S., Physical Rev. B 31, 4063 (1985).CrossRefGoogle Scholar
[16] Spaepen, F., Mat. Res. Soc. Symp. Proc. 37, 294 (1985).Google Scholar
[17] Srivastava, G. P., Martins, J. L., and Zunger, A., Phys. Rev. B 31, 2561 (1985).Google Scholar
[18] Ourmazd, A., and Bean, J. C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar