Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-25T05:09:03.886Z Has data issue: false hasContentIssue false

Structural Stability of Amorphous Semiconductor Superlattices

Published online by Cambridge University Press:  28 February 2011

P. D. Persans
Affiliation:
Rensselaer Polytechnic Institute, Physics Department and Center for Integrated Electronics, Troy, NY 12180-3590
A. F. Ruppert
Affiliation:
Exxon Research and Engineering Co., Annandale, NJ 08801
B. Abeles
Affiliation:
Exxon Research and Engineering Co., Annandale, NJ 08801
Y. J. Wu
Affiliation:
Rensselaer Polytechnic Institute, Physics Department and Center for Integrated Electronics, Troy, NY 12180-3590
V. Pantojas
Affiliation:
Rensselaer Polytechnic Institute, Physics Department and Center for Integrated Electronics, Troy, NY 12180-3590
K. S. Liang
Affiliation:
Exxon Research and Engineering Co., Annandale, NJ 08801
G. Hughes
Affiliation:
Exxon Research and Engineering Co., Annandale, NJ 08801
Get access

Abstract

We report recent results of studies of the structure and thermal stability of periodic multilayers based on hydrogenated amorphous silicon, hydrogenated amorphous germanium, silicon nitride and silicon oxide. By varying the sublayer thickness from 1 nm to 20 nm it is possible to extract information on the range and magnitude of relaxation and interdiffusion in these metastable materials. It is also possible to gain information on the influence of interfaces on crystallization and relaxation. The principal techniques discussed here are Raman scattering, optical absorption and high resolution x-ray reflectivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Roth, J. A., Kokorowski, S. A., Olson, G. L., and Hess, L. D., in Laser and Electron Beam Interactions with Solids, Eds. Appleton, B. R. and Celler, G. (Elsevier, Amsterdam, 1982), p. 169.Google Scholar
2Wronski, C. R., Persans, P. D., and Abeles, B., Appl. Phys. Lett., 49, 569, (1986).Google Scholar
3Conde, J. P., Chu, V., Aljishi, S., Shen, D. S., Smith, Z E., Kolodzey, J., and Wagner, S., Proc. 19th IEEE Photovoltaic Specialists Conf., (IEEE, 1987), p. 1107.Google Scholar
4Oda, S., Shirai, H., Tanabe, A., Hanna, J., and Shimizu, I., in Disordered Semiconductors, ed. Kastner, M., Thomas, G., and Ovshinsky, S., (Plenum, New York, 1987), p. 563.Google Scholar
5Polk, D. E., J. Non-Cryst. Solids, 5, 365, (1971).Google Scholar
6Hamasaki, M., Adachi, T., Wakayama, S., and Kikuchi, M., J. Appl. Phys., 49, 1795, (1985)Google Scholar
7Persans, P. D., Abeles, B., Scanlon, J., Stasiewski, H., Proc. of the 17th Intl. Conf. on the Phys. of Semiconductors, ed. Chadi, J. and Harrison, W., (Springer-Verlag, New York, 1985), p. 499.Google Scholar
8Roxlo, C. and Abeles, B., Phys. Rev. B, 34, 2522, (1986).Google Scholar
9Persans, P. D., Phys. Rev. B 39, 234, (1985); and in Amorphous Silicon and Related Materials, ed. H. Fritzsche, (World Scientific, Singapore, 1988), p. 1045.Google Scholar
10Yang, L. and Abeles, B., in Amorphous Silicon and Related Materials, ed. Fritzsche, H., (World Scientific, Singapore, 1988), p. 977.Google Scholar
11Persans, P. D., Ruppert, A., and Abeles, B., J. Non-Cryst. Sol. 102, 130, (1988).Google Scholar
12Persans, P. D., Ruppert, A. F., Abeles, B., Hughes, G., and Liang, K., in Mat. Res. Soc. Symp. Proc. 109, 711, (1989).Google Scholar
13Persans, P. D., and Ruppert, A. F., Proc. Mat. Res. Symp. 57, 329, (1987).Google Scholar
14Persans, P. D., Ruppert, A. F., Abeles, B., and Tiedje, T., Phys. Rev. B., 32, 5558, (1985).Google Scholar
15Roxlo, C. B., Abeles, B., and Persans, P. D., J. Vac. Sci. Technol. B, 4, 1430, (1986).Google Scholar
16Lannin, J. S., in “Semiconductors and Semimetals”, ed. Pankove, J., (Academic, Orlando, 1984), Vol. 21, Part B, p. 159.Google Scholar
17Maley, N., Pilione, L. J., Kshirsagar, S. T., and Lannin, J. S., Physica Amsterdam, 117B/118B. 880, (1983).Google Scholar
18Persans, P. D., Ruppert, A., and Abeles, B., J. Non-Cryst. Sol. 102, 130, (1988).Google Scholar
19Tsu, R., Gonzalez-Hernandez, J., Pollak, F. H., J. Non-Cryst. Sol., 66, 109, (1984).Google Scholar
20Beeman, D., Tsu, R., Thorpe, M. F., Phys. Rev. B, 32, 874, (1985).Google Scholar
21Maley, N., Lannin, J. S., Phys. Rev. B, 31, 5577, (1985).Google Scholar
22Parratt, L.G., Phys. Rev., 95, 359, (1954).Google Scholar
23Ruppert, A. F., Persans, P. D., Abeles, B., Liang, K., Hughes, G., and Lanford, W., Phys. Rev. B, submitted.Google Scholar
24Le Boite, M.G., Traverse, A., Nevot, L., Pardo, B., and Corno, J., J. Mater. Res., 3, 1089, (1988).Google Scholar
25Nevot, L. and Croce, P., Rev. de Phys. Appl., 15, 761, (1980).Google Scholar
26McVay, G. L. and DuCharme, A. R., Phys. Rev. B, 9, 629, (1974).Google Scholar
27Prokes, S. M. and Spaepen, F., Mat. Res. Soc. Symp. Proc., 56, 383, (1986); Appl. Phys. Lett., 47, 234, (1985).Google Scholar
28Paul, W., Connell, G. A. N., Adv. Phys. 22, (1972).Google Scholar
29Kakalios, J., these proceedings.Google Scholar
30Cody, G. D., Tiedje, T., Abeles, B., Brooks, B., and Goldstein, Y., Phys. Rev. Lett., 47, 1480, (1981).Google Scholar
31Persans, P. D., Ruppert, A. F., Abeles, B., Mat. Res. Soc. Symp. Proc., 103, 179, (1988).Google Scholar
32Honma, I., Hotta, H., Komiyama, H., and Tanaka, K., J. Non-Cryst. Sol. 97/98. 947, (1987).Google Scholar
33Williams, G. V. M., Bittar, A., Trohdahl, H. J., J. Appl. Phys., in press.Google Scholar