Skip to main content Accessibility help

Structural Properties of Polycrystalline Silicon Films Formed by Pulsed Rapid Thermal Processing

  • Yongqian Wang (a1), Xianbo Liao (a1), Hongwei Diao (a1), Jie He (a1), Zhixun Ma (a1), Guozhen Yue (a1), Shuran Sheng (a1), Guanglin Kong (a1), Yuwen Zhao (a2), Zhongming Li (a2) and Feng Yun (a2)...


A novel pulsed rapid thermal processing (PRTP) method has been used for realizing the solid-phase crystallization of amorphous silicon films prepared by PECVD. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results indicate that this PRTP is a suitable postcrystallization technique for fabricating large-area polycrystalline silicon films with good structural qualities such as large grain size, small lattice microstain and smooth surface morphology on low-cost substrate.



Hide All
1 Malhi, S. D., Shichijo, H., Banerjee, S. K., Sundaresan, R-, Elahy, M., Pollack, G., Richardson, W., Shah, A. H., Hite, L. R., Womack, R. H., Chatterjee, P. K., and Lam, H. W., IEEE Trans Electron Devices ED–32, 258 (1985).
2 Meier, J., Fluckiger, R., Keppner, H. and Shah, A., Appl. Phys. Lett. 65, 860 (1994).
3 Tamura, F., Okayasu, Y., Kumagai, K, Solar Energy Materials and Solar Cell 34, 263 (1994).
4 Troxell, J. R., Harrington, M. I., Erskine, J. C., Dumbaugh, W. H., Fehlner, F. P., and Miller, R. A., IEEE Electron Device Lett. EDL–7, 597 (1986).
5 Hawkins, W. G., WEEE Trans Electron Device ED–33, 477 (1986).
6 Harbeke, G., Krausbauer, L., Steigmeier, E., and Widmer, A., J. Electrochem. Soc. 131, 675 (1984).
7 Hatalis, M. and Greve, D., J. Appl. Phys. 63, 2260 (1988).
8 Stultz, T. J. and Gibbons, J. F., Appl. Phys. Lett. 41, 824 (1982).
9 Hatalis, M.K. and Greve, D.W., IEEE Electron Device Lett. EDL–8, 361 (1987).
10 Nakazawa, K., J.Appl.Phys. 69 (3), 1703 (1991).
11 Kakkad, R., Smith, J., Lau, W.S., Fonash, S.J. and Kerns, R., J.Appl.Phys. 65(5), 2069 (1989).
12 Fair, J.E., Solid State Technology. 1992, 47.
13 Im, S., Kim, H.J., and Thompson, M.O., Appl.Phys.Lett. 63, 1969 (1993).
14 Inshima, T., Kusumoto, N., kubo, N., Zhang, H.Y. and Yamazaki, S., J.Appl.Phys. 79 (12), 9064 (1996).
15 Liu, G. and Fonash, S.J., Appl.Phys.Lett. 55(7), 660 (1989).
16 Lee, S., Jeon, Y., and Joo, S., Appl.Phys.Lett. 66(13), 1671 (1995).
17 Kuo, Y. and Koziowski, P.M., Appl Phys.Lett. 69(8), 1092 (1996).
18 Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures, John Wiley & Sons, New York 1974.
19 Warren, B.E. and Averbach, B.L., J.Appl.Phys. 21, 595 (1950).
20 Warren, B. E., X-ray Diffraction, Addison-Wesley, Reading, Massachusetts, 1969.
21 Rachinger, W. A., J. Sci.Instrum, 25, 254 (1948).
22 Halepete, S. D., Lin, H. C., Fang, S. J., and Helms, C. R., Mater. Res. Soc. Symp. Proc. 386, 383 (1995).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed