Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T01:00:15.570Z Has data issue: false hasContentIssue false

Structural Characterization and Crystallization Process of Nanostructured Silicon Thin Films Produced in Low-Pressure Silane Plasma

Published online by Cambridge University Press:  10 February 2011

G. Viera
Affiliation:
Dep. Física Aplicada i Òptica, Universitat de Barcelona. Avgda. Diagonal, 647, E08028 Barcelona, Spain
Proca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces. (CNRS, UPR 258), Ecole Polytechnique, F91128 Palaiseau, France
J. Costa
Affiliation:
Grup de Recerca en Materials. Dept. d'Enginyeria Industrial. Universitat de Girona Avgda. Lluis Santaló s/n E17071 Girona, Spain
S. Martínez
Affiliation:
Dep. Cristal.lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona. Avgda. Diagonal 647, E08028 Barcelona, Spain
E. Bertran
Affiliation:
Dep. Física Aplicada i Òptica, Universitat de Barcelona. Avgda. Diagonal, 647, E08028 Barcelona, Spain
Get access

Abstract

Nanostructured silicon thin films (ns-Si:H), consisting of a two-phase mixture of amorphous and ordered material, were obtained by plasma-enhanced chemical vapor deposition (PECVD) under a wide range of plasma conditions. The key to embedding Si-ordered particles in the amorphous Si matrix was the formation of silicon clusters in the gas phase (diameter < 2nm) under conditions of plasma polymerization, and their incorporation into the growing films. The crystallization induced by thermal annealing in these nanostructured films can be attained faster than in conventional a-Si:H thin films, because the silicon-ordered particles cause a heterogeneous nucleation process in which they act as seeds for crystallization. In this work, we present a detailed structural characterization by using electron and X-ray diffraction patterns and Raman spectroscopy. The crystallization dynamics were studied in-situ by Raman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ross, R.C. and Jaklik, J., J. Appl. Phys. 55, p.3785 (1984).Google Scholar
2 Cabarrocas, P. Roca i, Gay, P. and Hadjadj, A., J. Vac. Sci. and Technol., 14, p.655 (1996).Google Scholar
3 Cabarrocas, P. Roca i, Hamma, S., Sharma, S.N., Viera, G., Bertran, E. and Costa, J., J.Non-Cryst. Solids, in press.Google Scholar
4 Viera, G., Cabarrocas, P. Roca i, Hamma, S., Sharma, S.N., Costa, J. and Bertran, E. in Amorphous and Microcrystalline Silicon Technology-1997, edited by Wagner, S., Hack, M., Schiff, E. A., Schropp, R. and Shimizu, I. (Mater. Res. Soc. Proc. 467, Pittsburgh, PA 1997), p. 313318.Google Scholar
5 Boufendi, L., Plain, A., Blondeau, J.Ph., Bouchule, A., Laure, C. and Toogood, M., Appl. Phys. Lett., 60 p. 169 (1992).Google Scholar
6 Cabarrocas, P. Roca i, Chevrier, J.B., Huc, J., Lloret, A., Parey, J.Y. and Schmitt, J.P.M., J. of Vac. sci. and Technol. 9, p. 2331 (1991).Google Scholar
7 Pollard, W. B. and Lucovsky, G., Phys. Rev. B, 26, p. 3172 (1982)Google Scholar
8 Guinier, A. in X-ray Diffiraction, ed. Freeman, , San Francisco, CA, p. 124. (1963)Google Scholar
9 Zhang, R., Costa, I. and Bertran, E., Phys. Rev. B. 53, p. 1 (1996)Google Scholar
10 Zi, I., Buscher, H., Falter, C., Ludwing, W., Zhang, K. and Xie, X., Appl. Phys. Lett. 69, p. 200 (1996)Google Scholar
11 Hofmieister, H., Dutta, J. and Hofmann, H., Phys. Rev. B, 52, p. 2856 (1996)Google Scholar
12 Anastassakis, E. and Liarokapis, E., J. Appl. Phys. 62, p. 3346 (1987)Google Scholar
13 Tsu, R., Hernandez, J. G., Appl. Phys. Lett., 41, p. 1016 (1982)Google Scholar
14 Hart, T.R., Aggarwal, R. L., Lax, B., Phys. Rev. B. 1, p. 638 (1970)Google Scholar
15 Campbell, I.H., Fauchet, P.M., Solid State Commun., 58, p. 739 (1986)Google Scholar