Skip to main content Accessibility help

Structural and Magnetic Properties of Granular Co-ZrO2 Films

  • Z Konstantinović (a1), M García del Muro (a1), B J Hattink (a1), M Varela (a1), X Batlle (a1) and A Labarta (a1)...


We present here the growth of Co-ZrO2 granular films by pulsed laser deposition (PLD). Co-ZrO2 prepared with PLD is an ideal system for investigating the properties of magnetic nanoparticle since the Co-ZrO2 interfaces are of high quality with no evidence of intermixing. The average composition of the samples is determined by x-ray photoemission spectroscopy and microprobe exsperiments. High resolution scanning electron microscopy shows existence of a regular distribution of Co nanoparticles embedded in the amorphous ZrO2 matrix. Ferromagnetic correlations among the Co nanoparticules are evident in the field-cooled state. The mean particle size and width of the distribution are determined by fitting the low-field magnetic susceptibility and isothermal magnetization in the paramagnetic regime to a distribution of Langevin functions. Magnetoresistance confirms its origin from the particle magnetization and also validates information about the particle distribution.



Hide All
1. Abeles, B., Sheng, P., Coutts, M.D. and Arie, Y., Adv. Phys. 24, 407 (1975).
2. Batlle, X. and Labarta, A., J. Phys. D: Appl. Phys. 35, 15 (2002).
3. Chien, C.L., ‘Science and Technology of Nanostructured Magnetic Materials’, ed Hadjipanayis, G.C., and Prinz, G.A. (New York: Plenum Press), p. 477 (1991).
4. Chien, C.L., J. Appl. Phys., 6 5267 (1991).
5. Abeles, B., ‘Applied Solid State Science: Advances in Materials and Device Research’, ed Wolfe, R. (New York: Academic) (1976).
6. Chien, C.L., Xiao, J.Q., and Jiang, J.S., J. Appl. 73 5309 (1993).
7. Respaud, M.., et al. Phys. Rev. B 57, 2925 (1998).
8. Ohnuma, M., Hono, K., Abe, E., Onodera, H., Mitani, S., and Fujimori, H., J. Appl. Phys. 82, 5646 (1997).
9. Sankar, S., Berkowitz, A. E., and Smith, D. J., Phys. Rev. B 62, 14273 (2000); S. Sankar, D. Dender, J. A. Borchers, D. J. Smith, R. W. Erwin, S. R. Kline, and A. E. Berkowitz, J. Magn. Magn. Mater. 221, 1 (2000).
10. , Jamet, Depuis, V., Mélinon, P., Guiraud, G., Pérez, A., Wernsdorfer, W., Traverse, A. and Baguenard, B., Phys. Rev. B 62, 493 (2000).
11. Graf, H., Vancea, J., and Hoffmann, H., Appl. Phys. Lett. 80, 1264 (2002).
12. Hattink, B. J., Labarta, A., Muro, M. Garcia del, Batlle, X., Sánchez, F., Varela, M., Phys. Rev. B 67, 033402 (2003).
13. Hattink, B. J., Muro, M. García del, Konstantinović, Z., Puntes, V.F., Batlle, X., Labarta, A., Varela, M., Int. J. Nanotechnology, in press.
14. Sheng, P., Abeles, B., and Arie, Y., Phys. Rev. Lett. 31, 44 (1973).
15. Balcells, Ll., Fontcuberta, J., Martínez, B. and Obradors, X., Phys. Rev. B 58, R14697 (1998); Ll. Balcells, B. Martínez, F. Sandiumenge, and J. Fontcuberta, J. Phys.: Condens. Matter 12, 3013 (2000).
16. Inoue, J. and Maekawa, S., Phys. Rev. B 53, R11927 (1996).

Structural and Magnetic Properties of Granular Co-ZrO2 Films

  • Z Konstantinović (a1), M García del Muro (a1), B J Hattink (a1), M Varela (a1), X Batlle (a1) and A Labarta (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed