Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T03:48:24.848Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of Pb/Cu Multilayers

Published online by Cambridge University Press:  28 February 2011

D. Neerinck
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
K. Temst
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
H. Vanderstraeten
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
C. Van Haesendonck
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
Y. Bruynseraede
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium
A. Gilabert
Affiliation:
Laboratoire de Physique de la Matière Condensée, Université de Nice, Pare Valrose, F 06034 Nice Cedex, France
Ivan K. Schuller
Affiliation:
Physics Department-B019, University of California-San Diego, La Jolla, California 92093, U.S.A.
Get access

Abstract

We have performed extensive structural and electronic transport measurements of Pb/Cu multilayered structures. The high-angle x-ray diffraction spectrum indicates the presence of continuous interfacial disorder. In the low-angle x-ray spectrum, pronounced minima occur at positions given by q = 2π/Λ, where Λ is the bilayer thickness. This is in sharp contrast to the results for Pb/Ge (crystalline/amorphous) multilayers, where minima are observed at positions q = 2π / tPb with tPb the Pb thickness. These low-angle x-ray spectra can be explained by taking into account lateral coherence and continuously distributed thickness fluctuations. The effect of this interfacial disorder on the electronic properties is investigated by measuring the low-temperature resistivity and the superconducting transition temperature of the multilayers. The calculated values for the elastic mean free path in the individual layers confirm the presence of strong interfacial scattering. The thickness dependence of the critical temperature is explained by taking into account an interfacial barrier with penetration probability σ ≃ 0.5.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 For an overview, see Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, New York, 1985).Google Scholar
2Mc Whan, D.B., inPhysics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Springer- Verlag, Berlin, 1988), p. 67Google Scholar
3Schuller, Ivan K., in Physics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Springer- Verlag, Berlin, 1988), p. 139Google Scholar
4Sevenhans, W., Locquet, J.-P. and Bruynseraede, Y., Rev. Sci. Instrum. 57, 937 (1986)Google Scholar
5Clemens, B.M., Stec, J.P., Heald, S.M. and Tranquada, J.M., in Interfaces, Superlattices and Thin Films. Materials Research Society Symposia Proceedings, edited by Dow, J.D. and Schuller, I.K. (Materials Research Society, Pittsburgh, 1987), p.489Google Scholar
6Clemens, B.M., Phys. Rev. B 33, 7615 (1986)Google Scholar
7Clemens, B.M. and Gay, J.G., Phys. Rev B 35, 9337 (1987)Google Scholar
8Sevenhans, W., Gijs, M., Bruynseraede, Y., Homma, H. and Schuller, Ivan K., Phys. Rev. B 34, 5955 (1986)Google Scholar
9Locquet, J.P., Neerinck, D., Sevenhans, W., Bruynseraede, Y., Homma, H. and Schuller, Ivan K., in Multilayers : Synthesis, Properties and Non- Electronic Applications, Materials Research Society Symposia Proceedings, edited by Barbee, T.W. Jr., Spaepen, F. and Greer, L. (Materials Research Society, Pittsburgh, 1988), Vol. D103, p. 211Google Scholar
10Underwood, J.H. and Barbee, T.W. Jr., Appl. Opt., Vol. 20, 17, 3027 (1981)Google Scholar
11Werner, T.R., Banerjee, I., Yang, Q.S., Falco, C.M. and Schuller, I.K., Phys. Rev. B 26, 2224 (1982)Google Scholar
12Gurvitch, M., Phys. Rev. B 34, 540 (1986)Google Scholar
13Zheng, J.Q., Ketterson, J.B., Falco, C.M. and Schuller, I.K., Physica 108B, 945 (1981)Google Scholar
14Meaden, G.T., Electrical Resistance of metals (Plenum, New York, 1965), p. 4Google Scholar
15Sondheimer, E.H., Adv. Phys. 1, 1 (1952)Google Scholar
16Spencer, C.R., Martinoli, P., Gibson, E.D., Verhoeven, J.D. and Finnemore, D.K., Phys. Rev. B 18, 1216 (1978)Google Scholar
17Banerjee, I., Yang, Q.S., Falco, C.M. and Schuller, Ivan K., Solid State Commun. 41, 805 (1982)Google Scholar
18 For a review, see Gilabert, A., Ann. Phys. 4, 203 (1977)Google Scholar
19Entin-Wohlman, O. and Alexander, S., J. Low Temp. Phys. 24, 229 (1976)Google Scholar
20McMillan, W.L., Phys. Rev. 175, 537 (1968)Google Scholar
21Werthamer, N.R., Phys. Rev. 132, 2440 (1963)Google Scholar
22Ovadyahu, Z., Ph. D. thesis (unpublished)Google Scholar