Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T17:25:45.497Z Has data issue: false hasContentIssue false

A Structural and Electrochemical Study of Li2Ti6O13

Published online by Cambridge University Press:  13 September 2011

J. C. Pérez-Flores
Affiliation:
Universidad San Pablo CEU, Departamento de Química. E-28668, Boadilla del Monte, Madrid, SPAIN
A. Kuhn
Affiliation:
Universidad San Pablo CEU, Departamento de Química. E-28668, Boadilla del Monte, Madrid, SPAIN
F. García-Alvarado
Affiliation:
Universidad San Pablo CEU, Departamento de Química. E-28668, Boadilla del Monte, Madrid, SPAIN
Get access

Abstract

The lithium titanate Li2Ti6O13 has been prepared from Na2Ti6O13 by Li ion exchange in molten LiNO3 at 325ºC. Chemical analysis and powder X-ray diffraction study of the reaction product, respectively, indicate that total Na/Li exchange takes place and the Ti-O framework of the Na2Ti6O13 parent structure is kept under those experimental conditions. The electrochemical characterization shows that Li2Ti6O13 is able to insert ca. 5 Li per formula unit under equilibrium conditions in the voltage range 1.5-1.0 V vs. Li+/Li. This corresponds to a specific discharge capacity of 250 mAh g-1. Lithium insertion occurs at an average equilibrium voltage of 1.5 V which is typical for oxides and titanates where Ti(IV)/Ti(III) is the active redox couple. After the first redox cycle a high reversible capacity is obtained (ca. 160 mAh g-1 at C/12, with a 70% capacity retention related to a phase transformation upon cycling). On the basis of these results, we are proposing Li2Ti6O13 as new lithium battery anode material to be further investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de Dompablo, M. E. A. y., Morán, E., Várez, A. and García-Alvarado, F., Mater. Res. Bull. 32, 993 (1997).Google Scholar
2. Kuhn, A., Baehtz, C. and García-Alvarado, F., J. Pow. Sources 174, 421 (2007).Google Scholar
3. Ohzuku, T., Ueda, A. and Yamamoto, N., J. Electrochem. Soc. 142, 1431 (1995).Google Scholar
4. Kuhn, A., Amandi, R. and García-Alvarado, F., J. Pow. Sources 92, 221 (2001).Google Scholar
5. Arroyo y de Dompablo, M. E., Várez, A. and García-Alvarado, F., J. Solid State Chem. 153, 132 (2000).Google Scholar
6. Thackeray, M. M., J. Electrochem. Soc. 142, 2558 (1995).Google Scholar
7. Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., Angew. Chem. Int. Ed. 43, 2286 (2004).Google Scholar
8. Tonti, D., Torralvo, M. J., Enciso, E., Sobrados, I. and Sanz, J., Chem. Mat. 20, 4783 (2008).Google Scholar
9. Dominko, R., Baudrin, E., Umek, P., Arcon, D., Gaberscek, M. and Jamnik, J., Electrochem. Comm. 8, 673 (2006).Google Scholar
10. Dominko, R., Dupont, L., Gaberscek, M., Jamnik, J. and Baudrin, E., J. Pow. Sources 174, 1172 (2007).Google Scholar
11. Pérez-Flores, J. C., Kuhn, A. and García-Alvarado, F., J. Pow. Sources 196, 1378 (2011).Google Scholar
12. Pérez-Flores, J. C., Kuhn, A. and García-Alvarado, F., ES Patent No. 2334754, (9 Marz 2009).Google Scholar
13. Rodriguez-Carvajal, J., Physica B: Condensed Matter 192, 55 (1993).Google Scholar
14. England, W. A., Goodenough, J. B. and Wiseman, P. J., J. Solid State Chem. 49, 289 (1983).Google Scholar
15. Yin, S. Y., Song, L., Wang, X. Y., Huang, Y. H., Zhang, K. L. and Zhang, Y. X., Electrochem. Comm. 11, 1251 (2009).Google Scholar
16. Andersson, S. and Wadsley, A. D., Act. Cryst. 15, 194 (1962).Google Scholar