Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T21:29:04.359Z Has data issue: false hasContentIssue false

Structural and Electrical Properties of HfO2 Films Grown by Atomic Layer Deposition on Si, Ge, GaAs and GaN

Published online by Cambridge University Press:  01 February 2011

Marco Fanciulli
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza (MI), Italy
Sabina Spiga
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza (MI), Italy
Giovanna Scarel
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza (MI), Italy
Grazia Tallarida
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza (MI), Italy
Claudia Wiemer
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza (MI), Italy
Gabriele Seguini
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza (MI), Italy
Get access

Abstract

HfO2 thin films were grown by atomic layer deposition on Si, Ge, GaAs and GaN substrates, using Hf(OtBu)2 (mmp)2 and HfCl4. The results show that this combination of precursors promotes a conformal and smooth growth of HfO2 films on all substrates. As grown films in the thickness range of 10–20 nm have the same electronic density and smooth surfaces. Films 20 nm thick are polycrystalline with the monoclinic structure, whereas the crystallized fraction in the 10 nm thick layers is much lower. The HfO2 /Ge interface is remarkably sharp. The dielectric constant of the HfO2 films is 15. Low density of interface states and oxide fixed charges are obtained for the films grown on Si. The optimization of the HfO2 interface with the other substrates requires more effort.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilk, G. D., Wallace, R. M. and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
2. Fischetti, M. V., Neumayer, D. A., and Cartier, E. A., J. Appl. Phys. 90, 4587 (2001).Google Scholar
3. Hiratani, M., Saito, S., Shimamoto, Y., and Torii, K., Jpn. J. Appl. Phys. 41, 4521 (2002)Google Scholar
4. Chui, C. O. et. al, IEEE Electr. Device Lett. 23, 473 (2002).Google Scholar
5. Kim, H., Chui, C. O., Saraswat, K. C., McIntyre, P. C., Appl. Phys. Lett. 83, 2647 (2003).Google Scholar
6. Passlack, M., Hong, M., Mannaerts, J.P., Opila, R.L., Chu, S. N. G., Moriya, N., Ren, F., Kwo, J. R., IEEE Trans. Electron Devices 44, 214 (1997).Google Scholar
7. Fu, D. J., Kwon, Y. H., Kang, T. W., Park, C. J., Baek, K. H., Cho, H. Y., Shin, D. H., Lee, C. H., and Chung, K. S., Appl. Phys. Lett. 80, 446 (2002).Google Scholar
8. Kim, J., Mehandru, R., Luo, B., Ren, F., Gila, B.P., Onstile, A. H., Abernathy, C. R., Pearton, S. J., Appl. Phys. Lett. 80, 4555 (2002).Google Scholar
9. Afanas'ev, V.V., Stesmans, A., Chen, F., Shi, X., Campbell, S. A., Appl. Phys. Lett. 81, 1053 (2002).Google Scholar
10. Kang, L., Lee, B. H., Qi, W.-J., Jeon, Y., Nieh, R., Gopalan, S., Onishi, K., Lee, J. C., IEEE Electron Device Lett. 21, 181 (2000).Google Scholar
11. Lin, Y.-S., Puthenkovilakam, R., Chang, J. P., Appl. Phys. Lett. 81, 2041 (2002).Google Scholar
12. Cook, T. E. Jr, Fulton, C. C., Mecouch, W. J., Davis, R. F., Lucovsky, G., Nemanich, R. J., J. Appl. Phys. 94, 7155 (2003).Google Scholar
13. Lee, Je-Hun, Maikap, S., Kim, Doh-Y., Mahapatra, R., Ray, S. K., No, Y. S., Choi, W. K., Appl. Phys. Lett 83, 779 (2003).Google Scholar
14. Ritala, M., Kukli, K., Rahtu, A., Räisänen, P. I., Leskelä, M., Sajavaara, T., and Keinonen, J., Science 288, 319 (2000).Google Scholar
15. Williams, P. A., Roberts, J. L., Jones, A. C., Chalker, P. R., Tobin, N. L., Bickley, J. F., Davies, H. O., Smith, L. M., and Leedham, T. J., Chem. Vap. Dep. 8, 163 (2002).Google Scholar
16. Wiemer, C., Ferrari, S., Fanciulli, M., Pavia, G., Lutterotti, L., accepted for publication in Thin Solid Films (2003).Google Scholar
17. Lange, T., Njoroge, W., Weis, H., Beckers, M., Wuttig, M., Thin Solid Films 365, 82 (2000)Google Scholar
18. ICSD, Inorganic Crystal Structure Database, file no 27313 Fachinformationzentrum Kar lsruhe, (2003).Google Scholar