Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T00:40:49.427Z Has data issue: false hasContentIssue false

Structural and Electrical Characterization of Rare Earth Doped Pb0.85La0.15TiO3 Ferroelectric Thin Films

Published online by Cambridge University Press:  10 February 2011

P. S. Dobal
Affiliation:
Department of Physics, University of Puerto Rico, San Juan PR 00931, USA
R. R. Das
Affiliation:
Department of Physics, University of Puerto Rico, San Juan PR 00931, USA
B. Roy
Affiliation:
Department of Physics, University of Puerto Rico, San Juan PR 00931, USA
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan PR 00931, USA
S. Jain
Affiliation:
Material Science Program, IIT Kanpur 208 016, India
D. C. Agrawal
Affiliation:
Material Science Program, IIT Kanpur 208 016, India
Get access

Abstract

Rare earth (Gd+3 and Ce+3) substitution on La+3 sites of the sol-gel prepared Pb0.85La0.15TiO3 films is studied using x-ray diffraction, atomic force microscopy, Raman scattering, and electrical characterization techniques. With increasing content of rare earths an increase in the lattice tetragonality was evidenced from x-ray data. Raman spectra obtained form Pb0.85La0.15-xCexTiO3 (x=0.0–0.07) and Pb0.85La0.15-xGdxTiO3 (x=0.0–0.15) films show features characteristics of PbTiO3 perovskite. Frequency variations of the lowest soft mode as a function of the composition x and temperature corraborate the increased tetragonality in these films. The ferroelectric transition temperature, dielectric constant, and coercive field was found to increase with Gd content. The phase transition temperature and polarization values increase up to 5 at.% Ce doping while they decrease above that composition due to the reduced domain wall mobility caused by Ce precipitation. A slight increase in the surface roughness was observed with increasing rare earth content in these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kang, Y. M. and Baik, S., J. Mater Res. 13, 995 (1998).Google Scholar
2. Wright, J. S. and Frarus, L. F., J. Mater Res. 8, 1712 (1993).Google Scholar
3. Bassora, L. A. and Eiras, J. A., Ferroelectrics 223, 285 (1999).Google Scholar
4. lijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60, 1 (1986).Google Scholar
5. Palkar, V. R., Purandare, S. C., and Pinto, R., J. Phys. D:Appl. Phys. 32, R1 (1999).Google Scholar
6. Qin, Z., A.-Qiang, G., and Z.-Yan, M., Acta Phys. Sinica, 6, 302 (1997).Google Scholar
7. Ren, W., Liu, Y., Qin, J., Zhang, L., and Yao, X., Ferroelectrics, 152, 201 (1994); Int. Ferroelectrics 15, 271 (1997).Google Scholar
8. Maiwa, H. and Ichinose, N., Jpn. J. Appl. Phys. 35, 4976 (1996).Google Scholar
9. Dobal, P. S., Majumder, S. B., Bhaskar, S., and Katiyar, R. S., J. Raman Spectrosc. 30, 567 (1999).Google Scholar
10. Kang, S. J. and Yoon, Y. S., Jpn. J. Appl. Phys. 36, 4459 (1997).Google Scholar
11. for reviews see MRS Bulletin, Vol.24, No.9, (1999).Google Scholar
12. Majumder, S. B., Mohapatra, Y. N., and Agrawal, D. C., Appl. Phys. Lett. 70, 138 (1997).Google Scholar
13. Nagao, N., Takeuchi, T., and Iijima, K., Jpn. J. Appl. Phys. 32, 4065 (1993).Google Scholar
14. Zarrycki, J., Prossas, M., and Phalippau, J., J. Mater. Sci. 17, 3371 (1982).Google Scholar
15. Jaffe, B., Cook, W. R., and Jaffe, M., Piezoelectric Ceramics, Acad. Press, London 1971.Google Scholar
16. Adachi, M., Kgai, M., and Kawabato, A., Proceedings SPIE- The international society for applications, 364, 457 (1994).Google Scholar
17. Schwartz, R. W., Tuttle, B. A., Doughty, D. H., Land, C. E., Goonow, D. C., Hernandez, C. L., Land, T. J., and Martinaze, S. F., IEEE transactions on UFFC, 38, 677 (1991).Google Scholar
18. Jain, S. and Agrawal, D. C., (under preparation).Google Scholar