Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T05:14:36.539Z Has data issue: false hasContentIssue false

Structural Analysis in Low-V-defect Blue and Green GaInN/GaN Light Emitting Diodes

Published online by Cambridge University Press:  01 February 2011

Mingwei Zhu
Affiliation:
zhum@rpi.edu, Rensselaer Polytechnic Institute, Department of Physics, Applied Physics, and Astronomy, 110 8th Street, Troy, NY, 12180, United States, 518-276-2814, 518-276-8042
Theeradetch Detchprohm
Affiliation:
zhum@rpi.edu, Rensselaer Polytechnic Institute, Future Chips Constellation, 110 Eighth Street, Troy, NY, 12180, United States
Yong Xia
Affiliation:
zhum@rpi.edu, Rensselaer Polytechnic Institute, Future Chips Constellation, 110 Eighth Street, T roy, NY, 12180, United States
Wei Zhao
Affiliation:
zhum@rpi.edu, Rensselaer Polytechnic Institute, Future Chips Constellation, 110 Eighth Street, Troy, NY, 12180, United States
Yufeng Li
Affiliation:
zhum@rpi.edu, Rensselaer Polytechnic Institute, Future Chips Constellation, 110 Eighth Street, T roy, NY, 12180, United States
Jayantha Senawiratne
Affiliation:
zhum@rpi.edu, Rensselaer Polytechnic Institute, Future Chips Constellation, 110 Eighth Street, Troy, NY, 12180, United States
Shi You
Affiliation:
zhum@rpi.edu, Rensselaer Polytechnic Institute, Future Chips Constellation, 110 Eighth Street, T roy, NY, 12180, United States
Lianghong Liu
Affiliation:
zhum@rpi.edu, Kyma Technologies, Inc., 8829 Midway West Road, Raleigh, NC, 27617, United States
Edward A. Preble
Affiliation:
zhum@rpi.edu, Kyma Technologies, Inc., 8829 Midway West Road, Raleigh, NC, 27617, United States
Drew Hanser
Affiliation:
zhum@rpi.edu, Kyma Technologies, Inc., 8829 Midway West Road, Raleigh, NC, 27617, United States
Christian Wetzel
Affiliation:
wetzel@rpi.edu, Rensselaer Polytechnic Institute, Future Chips Constellation, 110 Eighth Street, Troy, NY, 12180, United States
Get access

Abstract

In this study, we characterized the structural defects in blue and green GaInN/GaN LEDs grown on c-plane bulk GaN and sapphire substrates. Low density large V-defects with diameters around 600 nm were found in the blue LEDs on bulk GaN. They were initiated by edge-type threading dislocations (TDs) around the homoepitaxial growth interface. On the other hand, a high density 7×109 cm−2 of smaller V-defects with sidewalls on {1101} facets was observed in the active region of green LEDs on sapphire. Their diameter ranges from 150 to 200 nm. Misfit dislocations (MDs) generated in the quantum wells are found to initiate these V-defects. With optimizing the epitaxial growth conditions, the generation of MDs and their smaller V-defects was largely suppressed. As a result, the light output power improved by one order of magnitude. For green LEDs on bulk GaN, another unique type of defect was found in the active region: an inclined dislocation pair (IDP). In it a pair of dislocations propagate at a tilt angle of 18 to 23° from the [0001] growth direction towards <1100>. This defect seems to be a path of strain relief in the high indium composition quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wetzel, C., Salagaj, T., Detchprohm, T., Li, P., and Nelson, J. S.; Appl. Phys. Lett. 85, 866 (2004).10.1063/1.1779960Google Scholar
2. Nam, O. H., Bremser, M. D., Zheleva, T. S., and Davis, R. F., Appl. Phys. Lett. 71, 2638 (1997).Google Scholar
3. Detchprohm, T., Xia, Y., Xi, Y., Zhu, M., Zhao, W., Li, Y., Schubert, E. F., Liu, L., Tsvetkov, D., Hanser, D., and Wetzel, C.; J. Cryst. Growth, 298, 272 (2007).Google Scholar
4. Detchprohm, T., Zhu, M., Zhao, W., Xia, Y., Li, Y., Senawiratne, J., and Wetzel, C., Phys. Stat. Sol., submitted.Google Scholar
5. Zhu, M., Xia, Y., Zhao, W., Li, Y., Senawiratne, J., Detchprohm, T., and Wetzel, C., J. Electron. Mater., submitted.Google Scholar
6. Zhu, M., Detchprohm, T., You, S., Wang, Y., Xia, Y., Zhao, W., Li, Y., Senawiratne, J., Zhang, Z., and Wetzel, C., Phys. Stat. Sol., submitted.Google Scholar
7. Cantu, P., Wu, F., Waltereit, P., Keller, S., Romanov, A. E., DenBaars, S. P., and Speck, J. S., J. Appl. Phy., 97, 103435 (2005).Google Scholar
8. Follstaedt, D. M., Lee, S. R., Provencio, P. P., Allerman, A. A., Floro, J. A., and Crawford, M. H., Appl. Phys. Lett. 87, 121112 (2005).Google Scholar
9. Costa, P. M. F. J., Datta, R., Kappers, M. J., Vickers, M. E., Humphreys, C. J., Graham, D. M., Dawson, P., Godfrey, M. J., Thrush, E. J., and Mullins, J. T., Phys. Stat. Sol. (a) 203, 1729 (2006).10.1002/pssa.200565219Google Scholar
10. Cho, H. K., Lee, J. Y., Kim, C. S., and Yang, G. M., J. Appl. Phy., 91, 1166 (2001).10.1063/1.1429765Google Scholar
11. Lu, W., Li, D. B., Li, C. R., Shen, F., and Zhang, Z., J. Appl. Phy., 95, 4362 (2004).10.1063/1.1667010Google Scholar
12. Song, T. L., J. Appl. Phy., 98, 084906 (2005).Google Scholar
13. Pereira, S., Correia, M. R., Pereira, E., Trager-Cowan, C., Sweeney, F., O'Donell, K. P., Alves, E., Franco, N., and Sequeira, A. D., Appl. Phys. Lett. 81, 1207 (2002).Google Scholar