Skip to main content Accessibility help

Stress of Platinum Thin Films Deposited by Dc Magnetron Sputtering Using Argon/Oxygen Gas Mixture

  • Min Hong Kim (a1), Tae-Soon Park (a1), Dong-Su Lee (a2), Yong Eui Lee (a1), Dong-Yeon Park (a2), Hyun-Jung Woo (a2), Dong-Il Chun (a2), Euijoon Yoon (a1) and Jowoong Ha (a2)...


Pt thin films were deposited by a DC magnetron sputtering with Ar/O2 gas mixtures. Due to the oxygen incorporation into the Pt films, deposition rate and resistivity of as-deposited Pt thin films increased with oxygen fraction in the sputtering gas. No peaks from crystalline Pt oxides were observed by x-ray diffraction (XRD) and excessive oxygen incorporation into Pt lead to an amorphous Pt oxide formation. More oxygen could be incorporated in the Pt thin films deposited at lower temperatures and at higher total pressures. Incorporated oxygen was completely removed after an annealing at 800 °C for an hour in air ambient, as the resistivity of the Pt thin films recovered their bulk resistivity values. Tensile stress of the Pt films decreased with oxygen incorporation, and approached a saturation level at high resistivity of the films, presumably due to the formation of amorphous Pt oxides.



Hide All
1. Moazzami, R., Semicond. Sci. Technol. 10, 375 (1995).
2. Hwang, C. S., Park, S. O., Kang, C. S., Cho, H.-J., Kang, H.-K., Ahn, S. T. and Lee, M. Y., Jpn. J. Appl. Phys. 34, 5178 (1995).
3. Al-Shareef, H. N., Bellur, K. R., Auciello, O. and Kingon, A. I., Ferroelectrics 152, 85 (1994).
4. AI-Shareef, H. N., Gifford, K. D., Rou, S. H., Hren, P. D., Auciello, O. and Kingon, A. I., Integrated Ferroelectrics 3, 321 (1993).
5. McBride, J. R., Graham, G. W., Peters, C. R. and Weber, W. H., J. Appl. Phys. 69, 1596 (1991).
6. Hecq, M., Hecq, A. and Liemans, M., J. Appl. Phys. 49, 6176 (1978).
7. Buhdani, R. C., Prakash, S., Doerr, H. J. and Bunshah, R. F., J. Vac. Sci. Technol. A 4, 3023 (1986).
8. Hecq, M. and Hecq, A., J. Vac. Sci. Technol. 18, 219 (1981).
9. Ohring, M., The Materials Science of Thin Films, (Academic Press Inc., San Diego, 1992) pp. 403438
10. Gittis, A. and Dobrev, D., Thin Solid Films 130, 335 (1985)
11. Stoney, G. G., Proc. R. Soc. London, Ser. A 82, 172 (1909).
12. Thornton, J. A., J. Vac. Sci. Technol. A4, 3059 (1986)
13. Bennewitz, C. D., Westwood, W. D., Brown, J. D., J. Appl. Phys. 46, 558 (1975).
14. Hammond, C. R. in CRC Handbook of Chemistry and Physics, edited by Lide, D. R., CRC Press, 19901991, pp. 487 ∼ 4–88.
15. Lee, D.-S., Park, D.-Y., Kim, M. H., Chun, D.-I., Ha, J., and Yoon, E., 1996 Fall Meeting of Materials Research Society, Boston, Dec. 2–6.
16. Neff, N., Henkel, S., Hartmannsgruber, E., Steinbeiss, E., Michalke, W., Steenbeck, K., Schmidt, H. G., J. Appl. Phys. 79, 7672 (1996).
17. Alexander, P. M. and Hoffman, R.W., J. Vac. Sci. Technol. 13, 96 (1976).
18. Machlin, E. S., Materials Science in Microelectronics (Giro Press, New York, 1995) pp. 157 ∼ 171.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed