Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T02:56:40.287Z Has data issue: false hasContentIssue false

Stress, Microstructure and Temperature Stability of Reactive Sputter Deposited WNx Thin Films

Published online by Cambridge University Press:  17 March 2011

K. D. Leedy
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433
M. J. O'Keefe
Affiliation:
University of Missouri-Rolla, Dept. of Metallurgical Engineering, Rolla, MO 65401
J. G. Wilson
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433
R. Osterday
Affiliation:
Southwestern Ohio Council for Higher Education, Dayton, OH 45420
J. T. Grant
Affiliation:
Research Institute, University of Dayton, Dayton, OH 45469
Get access

Abstract

Tungsten nitride (WNx) thin films can be used as Schottky barriers in high power, high temperature semiconductor devices or as diffusion barriers between Cu, low-k dielectric and silicon because each application requires a thermally stable film. Therefore, it is important to understand the thin film properties of WNx as a function of deposition conditions and elevated temperature exposure. In this investigation, the influence of nitrogen content and post deposition annealing on the stress and microstructure of reactive dc magnetron sputter deposited WNx films was analyzed. With an increasing N2 to Ar flow ratio, the as-deposited crystal structure of the films changed from α-W to β-W to amorphous WNx and finally to W2N. Rapid thermal anneals up to 650°C resulted in large tensile stress increases and phase transformations to W2N in the nitrogen-containing films. Grain growth during annealing decreased as the concentration of nitrogen in the film increased. The nitrogen content in the films was determined using x-ray photoelectron spectroscopy (XPS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yu, K. M., Jaklevic, J. M., Haller, E. E., Cheung, S. K. and Kwok, S. P., J. Appl. Phys. 64(3), 1284 (1988).10.1063/1.341847Google Scholar
2. Kim, Y. T. and Lee, C. W., J. Appl. Phys. 76(1), 542 (1994).10.1063/1.357108Google Scholar
3. Geissberger, A. E., Sadler, R. A., Leyenaar, F. A. and Balzan, M. L., J. Vac. Sci. Technol. A 4(6), 3091 (1986).10.1116/1.573634Google Scholar
4. Lee, J. S., Park, C. S., Yang, J. W., Kang, J. Y. and Ma, D. S., J. Appl. Phys. 67(2), 1134 (1990).10.1063/1.345759Google Scholar
5. Wong, S. S., Ryu, C., Lee, H. and Kwon, K.-W. in Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits, edited by Murarka, S. P., Fraser, D. B., Eizenberg, M., Tung, R., Madar, R. (Mater. Res. Soc. Proc. 514, Warrendale, PA, 1998) pp. 7581.Google Scholar
6. Chin, B. et al. , Solid State Technol. 41(7), 141 (1998).Google Scholar
7. Sun, X., Kolawa, E., Chen, J.-S., Reid, J. S. and Nicolet, M.-A., Thin Solid Films 236, 347 (1993).10.1016/0040-6090(93)90694-KGoogle Scholar
8. Galewski, C. and Seidel, T., European Semiconductor Design Production Assembly 21(1), 31 (1999).Google Scholar
9. Kelsey, J. E., Goldberg, C., Nuesca, G., Peterson, G. and Kaloyeros, A. E., J. Vac. Sci. Technol. B 17(3), 1101 (1999).10.1116/1.590703Google Scholar
10. Lee, C. W. and Kim, Y. T., Appl. Phys. Lett. 65(8), 965 (1994).10.1063/1.112163Google Scholar
11. Lin, J., Tsukune, A., Suzuki, T. and Yamada, M., J. Vac. Sci. Technol. A 17(3), 936 (1999).10.1116/1.581667Google Scholar
12. Suh, B.-S., Lee, Y.-J., Hwang, J.-S. and Park, C.-O., Thin Solid Films 348, 299 (1999).10.1016/S0040-6090(99)00055-3Google Scholar
13. So, F. C. T., Kolawa, E., Zhao, X.-A., Pan, E. T.-S. and Nicolet, M.-A., J. Appl. Phys. 64(5), 2787 (1988).10.1063/1.341579Google Scholar
14. Uekubo, M., Oku, T., Nii, K., Murakami, M., Takahiro, K., Yamaguchi, S., Nakano, T. and Ohta, T., Thin Solid Films 286, 170 (1996).10.1016/S0040-6090(96)08553-7Google Scholar
15. Lee, C. W., Kim, Y. T., Lee, C., Lee, J. Y., Min, S.-K. and Park, Y. W., J. Vac. Sci. Technol. B 12(1), 69 (1994).10.1116/1.587110Google Scholar
16. Yongjun, H., U. S. Patent No. 5633200, 1997.Google Scholar
17. Seah, M.P. in Practical Surface Analysis, 2nd Ed., Vol.1, Auger and X-ray Photoelectron Spectroscopy, ed. by Briggs, D. and Seah, M.P., (John Wiley, Chichester, 1990), Chapter 5.Google Scholar
18. Lin, J., Tsukune, A., Suzuki, T. and Yamada, M., J. Vac. Sci. Technol. A 16(2), 611 (1998).10.1116/1.581077Google Scholar
19. Spaepen, F., Acta Mater. 48, 31 (2000).10.1016/S1359-6454(99)00286-4Google Scholar