Skip to main content Accessibility help

Stress induced phase transition in a monomolecular perfluroalkylsilane film self assembled on aluminium surface

  • Sanjay Kumar Biswas (a1) and D. Devaprakasam (a2)


We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.



Hide All
1. Berman, A. D. and Israelachvili, J. N., in Modern Tribology Handbook, Bhushan, B. (CRC Press, London, 2001), pp. 568600.
2. Demirel, A. L. and Granick, S., Phys. Rev. Lett. 77, 2261 (1996).
3. Du, Q., Xiao, X.-d., Charych, D., Wolf, F., Frantz, P., Shen, Y. R., and Salmeron, M., Phys. Rev. B 51, 7456 (1995).
4. Carpick, R. W. and Salmeron, M., Chem. Rev. (Washington, D.C.) 97, 1163 (1997).
5. Quon, R. A., Ulman, A., and Vanderlick, T. K., Langmuir 16, 3797 (2000).
6. Joyce, S. A., Thomas, R. C., Houston, J. E., Michalske, T. A., and Crooks, R. M., Phys. Rev. Lett. 68, 2790 (1992).
7. Siepmann, J. I. and McDonald, I. R., Phys. Rev. Lett. 70, 453 (1993).
8. Devaprakasam, D., Sampath, S., and Biswas, S. K., Langmuir 20, 1329 (2004).
9. Devaprakasam, D. and Biswas, S. K., Rev. Sci. Instrum. 74, 1228 (2003).
10. Devaprakasam, D. and Biswas, S. K., Rev. Sci. Instrum. 76, 035102 (2005).
11. Lucas, B. N., Rosenmeyer, C. T., and Oliver, W. C. (unpublished).
12. Maugis, D., Contact, Adhesion and Rupture of Elastic Solids (Springer, Berlin, 1999).
13. Leng, Y. and Jiang, S., J. Chem. Phys. 113, 8800 (2000).
14. Owens, D. K. and Wendt, R. C., J. Appl. Polym. Sci. 13, 1741(1969).
15. Tutein, A. B., Staurt, S. J., and Harrison, J. A., J. Phys. Chem. B 103, 11357 (1999).
16. Peachey, J., Van Alsten, J., and Granick, S., Rev. Sci. Instrum. 62, 643 (1991).
17. Shinn, N. D., Mayer, T. M., and Michalske, T. A., Tribol. Lett. 7, 67 (1999).
18. Mikulski, P. T. and Harrison, J. A., J. Am. Chem. Soc. 123, 6873 (2001).
19. Jeffery, S., Hoffmann, P. M., Pethica, J. B., Ramanujan, C., Ozer, H. O., and Oral, A., Phys. Rev. E 69, 046118 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed