Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T13:19:49.812Z Has data issue: false hasContentIssue false

Stress Development in Mo/Si and Ru/Si Multilayers

Published online by Cambridge University Press:  10 February 2011

J. M. Freitag
Affiliation:
Materials Science and Engineering, Stanford University Stanford, CA 94305
B. M. Clemens
Affiliation:
Materials Science and Engineering, Stanford University Stanford, CA 94305
Get access

Abstract

The stress evolution of Mo/Si and Ru/Si multilayers sputtered under the same processing conditions has been investigated. A series of Mo/Si multilayers was also prepared with varying sputtering pressures. The stress evolution of each multilayer displays a well-defined modulation concurrent with the deposition of Mo (Ru) and Si. Large stress develops during the early stages of deposition of each successive layer with Mo (Ru) exhibiting apparent tension and Si exhibiting apparent compression. In the Mo/Si multilayers, these initial transients cause curvature changes of, ∼ 2.5 to 4.5 N/m depending on the sputtering pressure. For Ru/Si the transients exceed 8 N/m and extend across a larger fraction of the total layer thickness. Intermixing and reaction at the interfaces of Mo/Si and Ru/Si multilayers lead to a volume contraction and consequently a contraction of the bilayer period. Moreover, volume contraction due to intermixing is a stress generating mechanism that may explain the initial transients in the stress evolution. The volume of the interdiffused regions of Mo/Si and Ru/Si multilayers was estimated by measuring the contraction of the bilayer period using x-ray diffraction. The results show a strong correlation with the size of the initial stress transients suggesting that intermixing may cause them.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

«1» Mirkarimi, P. B. and Montcalm, C., Proc. SPIE, vol.3331, pp. 133148 (1998).Google Scholar
«2» Montcalm, C., Bajt, S., Mirkarimi, P. B., Spiller, E., Weber, F. J., and Folta, J. A., Proc. SPIE, vol.3331, pp. 4251 (1998).Google Scholar
«3» Freitag, J. M. and Clemens, B. M., Appl. Phys. Lett. 73, 4345 (1998).Google Scholar
«4» Agarwal, B. K., X-ray Spectroscopy (Springer, Berlin 1979), pp. 134135.Google Scholar
«5» Floro, J. A., Chason, E., and Lee, S. R., Mater. Res. Soc. Symp. Proc., vol.406, pp. 491496 (1996).Google Scholar
«6» Stearns, D. G., Rosen, R. S., and Vernon, S. P., Proc. SPIE, vol.1547, p. 2 (1991).Google Scholar
«7» Pretorius, R., Thin Solid Films 290–291, 477–484 (1996).Google Scholar
«8» Freitag, J. M., Chintamaneni, A., and Clemens, B. M., submitted to Appl. Phys. Lett.Google Scholar
«9» Highmore, R. J., Somekh, R. E., Evetts, J. E., and Greer, A. L., J. Less-Common Metals 140, 353360 (1988).Google Scholar
«10» Clemens, B. M., J. Appl. hys. 61, 45254529 (1987).Google Scholar
«11» Stearns, D. G., Rosen, R. S., and Vernon, S. P., J. Vac. Sci. Technol. A 9, 26622669 (1991).Google Scholar
«12» Windt, D. L., Hull, R., and Waskiewicz, W. K., J. Appl. Phys. 71, 26752678 (1992).Google Scholar
«13» d'Heurle, F. M., Thin Solid Films 151, 4150 (1987).Google Scholar