Skip to main content Accessibility help
×
Home

Strength of Coherently Strained Nanolayers Under High Temperature Nanoindentation

  • Mok Yew P'ng (a1), X. D. Hou (a2), D. J. Dunstan (a3) and A. J. Bushby (a4)

Abstract

Semiconductor strained layer superlattices are an ideal model material to study the effects of coherency strain in plasticity, due to the fine control of nanolayer thickness and internal strain afforded by MBE deposition. Previously, nanoindentation of bulk InGaAs at 300K gave a yield pressure of 6GPa (Jayawera et al Proc. Roy Soc, A459, 2049, 2003) while bending at 500 centigrade gave a yield value of 30MPa (Pp’ ng et al Phil. Mag. 85, 4429, 2005). In contrast, coherently strained InGaAs superlattices gave nanoindentation values of 3GPa at room temperature and bending at 500oC gave a yield value also around 3GPa. It appears that the coherency strain can impart an athermal strengthening to the superlattice. It is clearly necessary to do mechanical testing over the range 300-800K that will be able to link the room temperature nanoindentation with the results from the high temperature bending experiment and to determine the relationship between strength, coherency strain and temperature. Preliminary experiments on these samples at elevated temperatures using a hot stage and the UMIS nanoindentation system is difficult but feasible with the help of AFM to verify the contact area.

Copyright

References

Hide All
1. Fischer-Cripps, A. C., Vacuum, 58, 569 (2000)
2. Bushby, A. J., Non-destructive testing and evaluation, 17, 213 (2001)
3. Fischer-Cripps, A. C., Nanoindentation, (Springer, 2004)
4. Pool, R., Science, 247, 643 (1990)
5. Jalili, N., Laxminarayana, K., Mechatronics, 14, 907 (2004)
6. P'ng, K. M. Y., Bushby, A. J., Dunstan, D. J., Philosophical Magazine, 85, 4429 (2005)
7. Jayaweera, N. B., Downes, J. R., Frogley, M. D., Hopkinson, M., Bushby, A. J., Kidd, P., Kelly, A., and Dunstan, D. J., Proc. Roy. Soc. A., 459, 2049 (2003)
8. Dunstan, D.J., J. Mat. Sci.: Materials in Electronics, 8, 337 (1997).
9. Madelung, O., Semiconductors Group IV Elements and III-V compounds, (Springer-Verlag, 1991)
10. Lim, Y. Y., Chaudhri, M. M., Philosophical Magazine, 84, 2877 (2004)
11. Hill, R., Storakers, B., Zdunek, A. B., Proc. Roy. Soc. A, 423, 301 (1989)10.1098/rspa.1989.0056
12. Saha, R., Nix, W.D., Materials Science and Engineering A, 319321, 898 (2001)
13. Lloyd, S. J., P'ng, K. M. Y., Clegg, W. J., Bushby, A. J., Dunstan, D. J., Philosophical Magazine, 85, 2469 (2005)
14. Yonenaga, I., Sumino, K., Phys. Stat. Sol. (a), 131, 663 (1992)
15. Schmidt, I., Gross, D., Proc. Roy Soc. Lond. A., 455, 3085 (1999)

Keywords

Strength of Coherently Strained Nanolayers Under High Temperature Nanoindentation

  • Mok Yew P'ng (a1), X. D. Hou (a2), D. J. Dunstan (a3) and A. J. Bushby (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed