Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T05:54:45.577Z Has data issue: false hasContentIssue false

Strain-Induced Diffusion in Heteroepitaxially Grown CuInSe2 on GaAs Substrates

Published online by Cambridge University Press:  21 February 2011

P. Fons
Affiliation:
Photon-Process Section, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba, Japan 305, paul@etlrips.etl.go.jp
S. Niki
Affiliation:
Photon-Process Section, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba, Japan 305, paul@etlrips.etl.go.jp
A. Yamada
Affiliation:
Photon-Process Section, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba, Japan 305, paul@etlrips.etl.go.jp
A. Okada
Affiliation:
Photon-Process Section, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba, Japan 305, paul@etlrips.etl.go.jp
D.J. Tweet
Affiliation:
Photon-Process Section, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba, Japan 305, paul@etlrips.etl.go.jp
Get access

Abstract

A series of CuInSe2 thin films of varying thicknesses were grown on both GaAs(001) substrates and nominally lattice-matched In0.29Ga0.71As (001) linearly graded buffers by MBE at 450°C. Transmission electron microscopy and high resolution x-ray diffraction measurements revealed the presence of a second phase with chalcopyrite symmetry strained to the CuInSe2 thin film in-plane lattice constant for CuInSe2 films grown on GaAs substrates. Further examination confirmed that the second phase possessed chalcopyrite symmetry. No second phase was observed in films grown on nearly lattice-matched In0.29Ga0.71As (001) linearly graded buffers. Secondary ion mass spectrometry confirmed the presence of interdiffusion from of Ga from the substrate into the CuInSe2layer. It is speculated that this diffusion is related to the state of stress due to heteroepitaxial misfit.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Contreras, M.A., Tuttle, J., Gabor, A., Tennant, A., Ramanalhan, K., Asher, S., Franz, A., Keane, J., Want, L., Scofield, J., and Noufi, R, Proc. 1 stWorld Conf. Pho tovoltaic Energy Conversion, (Hawaii, USA, Dec. 59, 1994).Google Scholar
2 Niki, S., Shibata, h., Fons, P. J., Yamada, A., Obara, A., Makita, Y., Kurafugi, T., Chichibu, S., Nakanishi, H, Appl. Phys. Lett 67, 1289 (1995).Google Scholar
3 Niki, S., Makita, Y., Yamada, A., Obara, A., Misawa, S., Igarashi, O., Aoki, K., Kutsuwada, N., Jpn J. Appl. Phys. 33 L500 (1994).Google Scholar
4 Fitzgerald, E.A., Xie, Y.-h., Greene, M. L., Brasen, D., Kortan, A. R., Michel, J., Mii, Y. -J., and Weir, B. E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
5 Chang, J. P., Chin, T. P., Tu, C. W., Kavanagh, K. L, Appl. Phys. Lett. 63, 500 (1993).Google Scholar
6 People, R., Bean, J.C, Appl. Phys. Lett. 47, 322 (1985).Google Scholar
7 Pidduck, A.J., Robbins, D.J., Cullis, A.G., Leong, W.Y., and Pitt, A. M., Thin Solid Films 222, 78 (1992).Google Scholar
8 Bottomly, D.J., Fons, P., Tweet, D.J., J. Cryst. Growth 154, 401 (1995).Google Scholar