Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T07:44:28.240Z Has data issue: false hasContentIssue false

Strained Ion Tracks in Amorphous Solids: Origin of Plastic Deformation

Published online by Cambridge University Press:  10 February 2011

H. Trinkaus
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
H. R. Schober
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Track formation in amorphous solids is treated in terms of viscoelastic shear stress relaxation in thermal spike regions which is followed by the freezing-in of the associated strain increment. The resulting strained tracks are considered to be the mesoscopic defects responsible for anisotropic creep and growth. A recently presented approximate quantitative approach to the problem is reviewed. In addition, a new set of constitutive equations describing the viscous flow in thermal spike regions is suggested and general solutions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
2. Fleischer, R. L., Price, P. B. and Walker, R. M., Nuclear Tracks in Solids (Univ. Calif Press, Berkeley, 1975).Google Scholar
3. Spohr, R., Ion Tracks and Microtechnology (Vieweg, Braunschweig, 1990).Google Scholar
4. Toulemonde, M. and Studer, F., Phil. Mag. A 58, 799 (1988).Google Scholar
5. Zhu, Yimei, Cai, Z. X., Budhani, R. C., Suenaga, M. and Welch, D. O., Phys. Rev. B 48, 6436 (1993).Google Scholar
6. Trautmann, C., Spohr, R. and Toulemond, M., Nucl. Instr. & Meth. B 83, 513 (1993).Google Scholar
7. Desauer, F., Z. Phys. 12, 38 (1923).Google Scholar
8. Seitz, F. and Koehler, J. S., Solid State Phys. 2, 305 (1956).Google Scholar
9. Lifshitz, I. M., Kaganov, M. I. and Tanatarov, L. V., J. Nucl. Energy, Part A: Reactor Science 12, 69 (1960).Google Scholar
10. Seeger, A., Proc. and UN Int. Conf. on Peaceful Uses of Atomic Energy, Geneva, 1958, Vol.6 (United Nations, New York, 1958), p. 250.Google Scholar
11. Rubia, T. Diaz de al, Averback, R. S., Benedek, R. and King, W. E., Phys. Rev. Lett. 59, 1930 (1987).Google Scholar
12. Averback, R. S., J. Nucl. Mater. 216, 49 (1994).Google Scholar
13. Toulemond, M., Dufour, C. and Paumier, E., Phys. Rev. B 46, 14362 (1992).Google Scholar
14. Toulemond, C. G., Dufour, C. and Toulemonde, E., J. Phys.: Cond. Matter 5, 995 (1993).Google Scholar
15. Szenes, G., Phys. Rev. B 51, 8026 (1995).Google Scholar
16. Trinkaus, H., Materials Science Forum 248, 3 (1997).Google Scholar
17. Barbu, A., Bibole, M., Hazit, R. Le, Bouffard, S. and Ramilou, J. C., J. Nuci. Mat. 165, 217 (1989).Google Scholar
18. Audouard, A., Balanzat, E., Jousset, J. C., Lesueur, D. and Thomé, L., J. Phys. Cond. Mat. 5, 995 (1993).Google Scholar
19. Zhu, Z. and Jung, P., Nucl. Instr. & Methods B 91, 269 (1994).Google Scholar
20. Hardtke, C., Schilling, W. and Ullmaier, H., Nucl. Inst. & Meth. Phys. Res., B 59/60, 377 (1991).Google Scholar
21. Volkert, C. A., J. Appl. Phys. 70, 3521 (1991); C. A. Volkert and A. Polman, Mat. Res. Soc. Symp. Proc. 235, 3 (1992).Google Scholar
22. Snoeks, E., Weber, T., Cacciato, A. and Polman, A., J. Appl. Phys. 78, 4723 (1995).Google Scholar
23. Brongersma, M. L., Snoeks, E. and Polman, A., Appl. Phys. Lett. 71, 1628 (1997).Google Scholar
24. Klaumünzer, S., Schumacher, G., Phys. Rev. Lett. 51, 1987 (1983).Google Scholar
25. Hou, Ming-dong, Klaumünzer, S., and Schumacher, G., Phys. Rev. B 41, 1144 (1990).Google Scholar
26. Klaumünzer, S., Rad. Eff. and Def in Solids 110, 79 (1989).Google Scholar
27. Klaumünzer, S., Nucl. Tracks Radiat. Meas. 19, 91 (1991).Google Scholar
28. Audouard, A., Dural, J., Toulemond, M., Lovas, A., Szenes, G., L. Thomé, Phys. Rev. B 54, 15690 (1996).Google Scholar
29. Primak, W., J. Appl. Phys. 35, 1342 (1964).Google Scholar
30. Trinkaus, H., J. Nucl. Mat. 223, 196 (1995).Google Scholar
31. Trinkaus, H., Nucl. Instr. & Meth. B 107, 155 (1996).Google Scholar
32. Trinkaus, H., Ryazanov, A. I., Phys. Rev. Lett. 74, 5072 (1995).Google Scholar
33. Ryazanov, A. I., Volkov, A. E., Klaumünzer, S., Phys. Rev. B 51, 12107 (1995).Google Scholar
34. Trinkaus, H., I. Nucl. Mat. 246, 244 (1997).Google Scholar
35. Szenes, G., Nucl. Instr. and Meth. B 107, 150 (1996).Google Scholar
36. Trautmann, C., Klaumünzer, S. and Trinkaus, H., to be published.Google Scholar
37. Eshelby, J. D., Proc. Roy. Soc. A 241, 376 (1957).Google Scholar
38. Mura, T., Micromechanics of Defects in Solids (Nijhoff, The Hague, 1982).Google Scholar
39. Ryazanov, A. I., Trinkaus, H. and Volkov, A. E., to be published.Google Scholar
40. Reiner, M., in Encyclopedia of Physics, Vol. VI, Elasticity and Plasticity, edited by Flügge, S. (Springer, Berlin-Göttingen-Heidelberg, 1958), pp. 434487 Google Scholar
41. Landau, L. D. and Lifshitz, E. M., Theory of Elasticity, 3rd Ed. (Pergamon, New York-Oxford, 1986).Google Scholar
42. Tsao, S. S., Spaepen, F., Acta Met. 33, 891 (1985).Google Scholar