Skip to main content Accessibility help

Strain Relief and Defect Formation in High Dose Oxygen Implanted Silicon

  • D. Venables (a1), K. S. Jones (a1), F. Namavar (a2) and J. M. Manke (a2)


Lattice strain and defect formation in oxygen implanted silicon (SIMOX) were investigated as a function of dose and annealing conditions by high resolution x-ray diffraction and transmission electron microscopy. X-ray rocking curves revealed the presence of two distinct strained layers. Self-interstitial clusters and oxygen interstitials gave rise to a buried strain layer in unidirectional tension centered around the projected range at low doses (l×1016 and 3×1016 cm−2. As the dose was increased to 1×1017 and 3×1017 cm−2 a supersaturation of vacancies near the surface produced a second strain layer with a unidirectional lattice contraction at the wafer surface. Annealing at 900°C, 0.5 hr. reduced this surface strain as the defects coarsened into observable cavities. The development of cavities upon annealing was used in a sequential implantation and low temperature annealing process to produce low threading dislocation density SIMOX. Possible mechanisms for threading dislocation formation are discussed.



Hide All
1. Homma, Y., Oshima, M., and Hayashi, T., Jap. J. Appl. Phys. 21, 890 (1982).
2. Hill, D., Fraundorf, P., and Fraundorf, G., J. Appl. Phys. 63, 4933 (1988).
3. Cheek, T.F. Jr, and Chen, D., Mater. Res. Soc. Proc. 107, 53 (1988).
4. Margail, J., Stoemenos, J., Jaussaud, C., and Bruel, M., Appl. Phys. Lett. 54, 526 (1989).
5. Namavar, F., Cortesi, E., and Sioshansi, P., Mater. Res. Soc. Proc. 128, 623 (1989).
6. El-Ghor, M.K., Pennycook, S.J., Sjoreen, T.P., White, C.W., and Narayan, J., Mater. Res. Soc. Proc. 107, 79 (1988).
7. El-Ghor, M.K., Pennycook, S.J., Namavar, F., and Karam, N.H., Appl. Phys. Lett. 57, 156 (1990).
8. Visitserngtrakul, S., Jung, C.O., Ravi, T.S., Cordts, B., Burke, D.E., and Krause, S.J., Inst. Phys. Conf. Ser. No. 100, 557 (1989).
9. Visitserngtrakul, S., Cordts, B.F., and Krause, S., Mater. Res. Soc. Proc. 157, 161 (1990).
10. van Ommen, A.H., Koek, B.H., and Viegers, M.P.A., Appl. Phys. Lett. 49, 1062 (1986).
11. van Ommen, A.H., Mater. Res. Soc. Proc. 107, 43 (1988).
12. Nakashima, S., and Izumi, K., J. Mater. Res. 5, 1918 (1990).
13. Namavar, F., Cortesi, E., Pinizzotto, R.F., and Yang, H., Mater. Res. Soc. Proc. 157, 179 (1990).
14. Jones, K.S., Prussin, S., and Weber, E.R., Appl. Phys. A 45, 1 (1988).
15. Bede Scientific Instruments, Ltd., Durham, UK.
16. Larson, B.C., White, C.W., and Appleton, B.R., Appl. Phys. Lett. 32, 801 (1978).
17. Tsai, C.J., Dommann, A., Nicolet, M.A., and Vreeland, T. Jr, J. Appl. Phys. 69, 2076 (1991).
18. Venables, D., Jones, K.S., and Namavar, F., submitted to Appl. Phys. Lett.
19. Maszara, W.P., J. Appl. Phys. 64, 123 (1988).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed