Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-18T20:58:59.623Z Has data issue: false hasContentIssue false

Strain Relaxation of He+ Implanted, Pseudomorphic Si1−xGex Layers on Si(100)

Published online by Cambridge University Press:  17 March 2011

B. Holländer
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
S. Mantl
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
St. Lenk
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
H. Trinkaus
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
D. Kirch
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
M. Luysberg
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
Th. Hackbarth
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
H.-J. Herzog
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
P.F.P. Fichtner
Affiliation:
Dept. de Metalurgia, Univ. Fed. do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
Get access

Abstract

Strain relaxed Si1−xGex buffer layers are of great importance as virtual substrates for Si1−xGex/Si quantum well structures and devices. We apply He+ ion implantation and subsequent annealing on pseudomorphic, MBE-grown Si1−xGex/Si(100) heterostructures with an implantation depth of about 100 nm below the Si1−xGex/Si interface. A narrow defect band is generated inducing the formation of strain relieving misfit dislocations during subsequent thermal annealing. Efficient strain relaxation was demonstrated for Si1−xGex layers with Ge fractions up to 30 at. %. The variation of the implantation dose and the annealing conditions changes the dislocation configuration and the He bubble structure. At a dose of 2×1016 cm−2 a high degree of relaxation is accompanied by a low density of threading dislocations of about 107 cm−2 for a Ge content of 30%. An additional increase of the Ge content can be achieved by annealing in oxygen. The oxidation of Si1−xGex leads to the formation of SiO2 while the Ge atoms are rejected from the oxide leading to a pile-up of Ge below the oxidation front. The heterostructures were analyzed using X-ray diffraction, Rutherford backscattering/channeling spectrometry and transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schäffler, F., Semicond. Sci. Technol. 12 (1997) 1515 Google Scholar
2. Ismail, K., Arafa, M., Saenger, K.L., Chu, J. O., and Meyerson, B.S., Appl. Phys. Lett. 66,1077 (1995)Google Scholar
3. Höck, G., Glück, M., Hackbarth, T., Herzog, H.-J., and Kohn, E., Thin Solid Films 336, 141 (1998)Google Scholar
4. Zeuner, M., Hackbarth, T., König, U., Gruhle, A., and Aniel, F., 57th Annual Dev. Res. Conf. Digest, Univ. of California, Santa Barbara, USA, IEEE 99TH 177, 8393 (1999)Google Scholar
5. Schäffler, F., Többen, D., Herzog, H.-J., Abstreiter, G., and Holländer, B., Semicond. Sci. Technol. 7, 260 (1992)Google Scholar
6. Fitzgerald, E.A., Xie, Y.H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J., and Weir, B.E., Appl. Phys. Lett. 59, 811 (1991)Google Scholar
7. Holländer, B., Mantl, S., Michelsen, W., Mesters, St., Hartmann, A., Vescan, L., Gerthsen, D., Nucl. Instr. Meth. B84, 218 (1994)Google Scholar
8. Powell, A.R., Iyer, S.S., and LeGoues, F.K., Appl. Phys. Lett. 64, 1856 (1994)Google Scholar
9. Linder, K.K., Zhang, F.C., Rieh, J.-S., Bhattacharya, P., and Houghton, D., Appl. Phys. Lett. 70, 3224 (1997)Google Scholar
10. Bauer, M., Lyutovich, K., Oehme, M., Kasper, E., Herzog, H.-J., and Ernst, F., Thin Sol. Films 369, 152 (2000)Google Scholar
11. Trinkaus, H., Holländer, B., SRongen, t., Mantl, S., Herzog, H.-J., Kuchenbecker, J., Hackbarth, T., Appl. Phys. Lett. 76, 3552 (2000)Google Scholar
12. Holländer, B., Lenk, St., Mantl, S., Trinkaus, H., Kirch, D., Luysberg, M., Hackbarth, T., Herzog, H.-J., Fichtner, P.F.P., Nucl. Instr. Meth. B175–177, 357 (2001)Google Scholar
13. Picraux, S.T., Chu, W.K., Allen, W.R., Ellison, J.A., Nucl. Instr. Meth. B15, 306 (1986)Google Scholar
14. Holländer, B., Mantl, S., Stritzker, B., Schäffler, F., Herzog, H.-J., Kasper, E., Appl. Surf. Sci. 50, 450 (1991)Google Scholar
15. Hackbarth, T., Herzog, H.-J., Zeuner, M., Höck, G., Fitzgerald, E. A., Bulsara, M., Rosenblad, C., Känel, H. von, Thin Solid Films 369, 148 (2000)Google Scholar
16. Tezuka, T., Sugiyama, N., Mizuno, T., Suzuki, M., and Takagi, S., Jpn. J. Appl. Phys. 40, 2866 (2001)Google Scholar