Skip to main content Accessibility help
×
Home

Strain Relaxation in Si1-xGex Thin Films on Si (100) Substrates: Modeling and Comparisons with Experiments

  • Kedarnath Kolluri (a1), Luis A. Zepeda-Ruiz (a2), Cheruvu S. Murthy (a3) and Dimitrios Maroudas (a1)

Abstract

Strained semiconductor thin films grown epitaxially on semiconductor substrates of different composition, such as Si1-xGex/Si, are becoming increasingly important in modern microelectronic technologies. In this paper, we report a hierarchical computational approach for analysis of dislocation formation, glide motion, multiplication, and annihilation in Si1-xGex epitaxial thin films on Si substrates. Specifically, a condition is developed for determining the critical film thickness with respect to misfit dislocation generation as a function of overall film composition, film compositional grading, and (compliant) substrate thickness. In addition, the kinetics of strain relaxation in the epitaxial film during growth or thermal annealing (including post-implantation annealing) is analyzed using a properly parameterized dislocation mean-field theoretical model, which describes plastic deformation dynamics due to threading dislocation propagation. The theoretical results for Si1-xGex epitaxial thin films grown on Si (100) substrates are compared with experimental measurements and are used to discuss film growth and thermal processing protocols toward optimizing the mechanical response of the epitaxial film.

Copyright

References

Hide All
[1] Mii, Y. J., Xie, Y. H., Fitzgerald, E. A., Monrow, D., Thiel, F. A., Weir, B. E., and Feldman, L. C., Appl. Phys. Lett. 59, 1611 (1991).
[2] Merwe, J. H. van der, J. Appl. Phys. 34, 117 (1963).
[3] Srolovitz, D. J., Acta. Metall. 37, 621 (1989).
[4] Cai, J., Mooney, P. M., Christiansen, S. H., Chen, H., Chu, J. O., and Ott, J. A., J. Appl. Phys. 95, 5347 (2004).
[5] Freund, L. B. and Nix, W. D., Appl. Phys. Lett. 69, 173 (1996).
[6] Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth 27, 118 (1974).
[7] Alexander, H. and Haasen, P., in: Seitz, F., Turnbull, D., Ehrenreich, H. (Eds)., Solid State Physics vol. 22, Academic Press, New York, 1968, p. 27.
[8] Alexander, H., in: Nabarro, F.R.N. (Ed.), Dislocations in Solids vol. 7, North Holland, Amsterdam, 1986, p. 113.
[9] Houghton, D. C., J. Appl. Phys. 70, 2136 (1991).
[10] Zepeda-Ruiz, L. A., Nosho, B. Z., Pelzel, R. I., Weinberg, W. H., and Maroudas, D., Surf. Sci. 441, L911 (1999).
[11] Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley, New York, 1982).
[12] Schwarz, K. W., Cai, J., and Mooney, P. M., Appl. Phys. Lett. 85, 2238 (2004).
[13] Foiles, S. M., Phys Rev. B 32, 7685 (1985).
[14] Kelires, P. C. and Tersoff, J., Phys. Rev. Lett. 63, 1164 (1989).
[15] Tersoff, J., Phys. Rev. B 39, 5566 (1989).

Strain Relaxation in Si1-xGex Thin Films on Si (100) Substrates: Modeling and Comparisons with Experiments

  • Kedarnath Kolluri (a1), Luis A. Zepeda-Ruiz (a2), Cheruvu S. Murthy (a3) and Dimitrios Maroudas (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed