Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-24T14:28:20.315Z Has data issue: false hasContentIssue false

Strain Relaxation During Solid-Phase Epitaxial Crystallisation Of GexSi1−x Alloy Layers with Depth Dependent Ge Compositions

Published online by Cambridge University Press:  15 February 2011

Wah-Chung Wong
Affiliation:
Electronic Materials Engineering Department, Australian National University, Canberra, ACT 0200, Australia
Robert G. Elliman
Affiliation:
Electronic Materials Engineering Department, Australian National University, Canberra, ACT 0200, Australia
Get access

Abstract

Solid-phase epitaxial growth (SPEG) of amorphous GeSi alloy layers has been examined. It is shown that fully strained depth dependent GeSi alloy layers can be produced by multiple ion-implantation and SPEG for implant doses below critical values. For doses above these critical values strain relaxation is shown to occur during SPEG at a well defined depth, and to be correlated with a reduction in the SPEG velocity caused by roughening or faceting of the crystalline/amorphous interface. The velocity reduction is shown to be a reliable indicator of strain relaxation. Both the critical dose and the depth at which strain relaxation occurs are shown to be in excellent agreement with equilibrium critical thickness theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bean, J.C., Proceedings of the IEEE, 80, 571 (1992).Google Scholar
2. Fitzgerald, E.A., Xie, Y.-H., Monroe, D., Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiel, F.A. and Weir, B.E., J. Vac. Sci. Technol., B10, 1807 (1992).Google Scholar
3. Jain, S.C., Willis, J.R. and Bullough, R.. Advances in Physics 39, 127 (1990).Google Scholar
4. Fitzgerald, E.A., Mat. Sci. Rep., 7, 87 (1991).Google Scholar
5. Crabbe, E.F., Cressler, J.D., Patton, G.L., Stork, J.M.C., Comfort, J.H. and Sun, J.Y.-C.. IEEE Electron Device Letters, 14, 193 (1993).Google Scholar
6. Gupta, A., Cook, C., Toyoshiba, L., Quiao, J., Yang, C.Y., Shoji, K., Fukami, A., Nagano, T. and Tokuyama, T.. J. Electr. Mat., 22, 125 (1992).Google Scholar
7. Selvakumar, C.R. and Hecht, B., IEEE Electron Device Letters, 12, 444 (1991).Google Scholar
8. Mezey, G., Matteson, S.M. and Gyulai, J.. Nucl. Instr. Meth. 182/183, 587 (1981)Google Scholar
9. Chilton, B.T., Robinson, B.J., Thompson, D.A., Jackman, T.E. and Baribeau, J.-M.. Appl. Phys. Lett. 54, 42 (1989).Google Scholar
10. Paine, D.C., Howard, D.J., Stoffel, N.G. and Horton, J.A.. J. Mater. Res. 5, 1023 (1990).Google Scholar
11. Paine, D.C., Howard, D.J. and Stoffel, N.G.. J. Electronic Materials 20, 735 (1991).Google Scholar
12. Paine, D.C., Evans, N.D. and Stoffel, N.G.. J. Appl. Phys. 70, 4278 (1991).Google Scholar
13. Hong, Q.Z., Zhu, J.G., Mayer, J.W., Xiaand, W. Lau, S.S.. J. Appl. Phys. 71, 1768 (1992).Google Scholar
14. Corni, F., Fabboni, S., Ottaviani, G., Queirolo, G., Bisero, D., Bresolin, C., Fabbri, R. and Seridori, M., J. Appl. Phys. 71, 2644 (1992).Google Scholar
15. Yu, K.M., Brown, I.G. and Im, S.. Mat. Res. Soc. Symp. Proc. 235, 293 (1992)Google Scholar
16. Lee, C., Haynes, T.E. and Jones, K.S.. Appl. Phys. Lett. 62, 501 (1993).Google Scholar
17. Elliman, R.G. and Wong, W.C.. Nucl. Instr. Meth. B80/81, 768 (1993).Google Scholar
18. Ellimanand, R.G. Wong, W.C.. Nucl. Instr. Meth. (In Press).Google Scholar
19. Elliman, R.G. and Wong, W.C.. Materials Science Forum. (In Press)Google Scholar
20. Elliman, R.G., Wong, W.C. and Kringhoj, P.. Mat. Res. Soc. Symp. Proc. (This proceedings).Google Scholar
21. Kringhoj, P., Elliman, R.G. and Hansen, J.L.. Mat. Res. Soc. Symp. Proc. (This proceedings).Google Scholar
22. Olson, G.L. and Roth, J.A.. Mat. Res. Rep. 3, 1 (1988).Google Scholar
23. Roth, J.A., Olson, G.L., Jacobson, D.C. and Poate, J.M.. Appl. Phys. lett., 57, 1340 (1990).Google Scholar
24. Takagi, S., ActaCryst. 15, 1311 (1962)Google Scholar
25. Takagi, S., J. Phys. Soc. Japan, 26, 1239 (1969)Google Scholar
26. Taupin, D., Bull. Soc. Fr. Mineral. Crystallogr., 87, 469 (1964).Google Scholar