Skip to main content Accessibility help
×
Home

Strain and Fracture in Whisker Reinforced Ceramics [1]

  • Peter Angelini (a1), W. Mader (a2) and P. F. Becher (a1)

Abstract

Whisker reinforced ceramics offer the potential for increased fracture strength and toughness [2]. However, residual strain due to the thermal expansion mismatch between Al2O3 and SiC may affect mechanical properties of such composites. Crack tip interaction with the whisker/matrix may lead to changes in debonding behavior or influence other toughening mechanisms. The strain field in the Al2O3 matrix surrounding SiC whiskers was analyzed with a High Voltage Transmission Electron Microscope (HVEM). Strain contrast oscillations indicating the presence of residual stress in the specimen were observed in a Al2O3-5 vol % SiC composite having ≃15 μ grain size.The strain field was found to have both radial (perpendicular to whisker axis) and axial (parallel to whisker axis) components. A strain field was also present near the end faces of SiC whiskers. In situ thermal annealing to 573, 873, and 1173 K showed a decrease in the residual strain while in situ cooling to ≃77 K revealed little change in the strain. These results show that residual stresses in the compacts result from differences in thermal expansion and elastic constants of the matrix and whisker materials. Dynamic in situ fracture experiments performed in an HVEM on the Al2O3-5 vol % SiC having ≃1 μm as well as on Al2O3-20 vol % SiC having ≃1 μm grain size revealed that fracture resistance is due to a number of mechanisms including debonding near the whisker matrix interface, crack deflection, pinning, and bridging by SiC whiskers. Formation of secondary fractures and rocracks near and in front of propogating crack tips was also observed in the larger grain size composite.

Copyright

References

Hide All
1. Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under Contract DE-AC05–840R21400 with Martin Marietta Energy Systems, Inc.
2. Wei, G. and Becher, P. F., J. Am. Ceram. Soc., 87, 267 (1986).
3. (a) Becher, P. F., Tiegs, T. N., Ogle, J. E., and Warwick, W. H., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G. Hassleman, D.P.H., and Lange, F. F., Plenum Publ. Corp.,New York (1986) pp. 6164; (b) N. Claussen, R. L. Weisskopf, and M. Rühle, Fracture Mechanics of Ceramics, edited by R. C. Bradt, A. G. Evans, D.P.H. Hassleman, and F. F. Lange, Plenum Publ. Corp., New York (1986), pp. 75–86.
4. Selsing, J., J. Am. Ceram. Soc., 419 (1961).
5. Wachtman, J. B. Jr., Scuderi, T. G., and Cleek, G. W., Am. Ceram. Soc., 45, 319 (1962).
6. Slack, G. A. and Bartram, S. F., J. Appl. Phys., 46, 89 (1975).
7. Funkenbush, A. W. and Smith, D. W., Met. Trans., 6A, 2299 (1975).
8. Jupp, R. S., Stein, D. F., and Smith, D. W., J. Mat. Sci., 15, 96 (1980).
9. Baik, S. and White, C. L., “Anisotropic Ca Segregation to the Surface of Al2O3” J. Am. Ceram. Soc. (1987).
10. Ashby, M. F. and Brown, L. M., Phil. Mag., 8, 1983 (1963).
11. Ashby, M. F. and Brown, L. M., Phil. Mag., 8, 1964 (1963).
12. Mott, N. F. and Nabarro, F.R.N., Proc. Phys. Soc. Lond., 52, 86 (1940).
13. Rühle, M. and Kriven, W. M., Ber. Bunsenges. Phys. Chem., 87, 222 (1983).
14. Kriven, W. M., in Adv. in Ceramics, edited by A. H., Heuer and L. W., Hobbs (The American Ceramic Society, Columbus, Ohio 1984) pp. 6477.
15. Mader, W. and Rühle, M., Proc. 10th ICEM Meeting, 2, 101 (1982).
16. Mader, W. and Rühle, M., Inst. Phys. Conf. Ser. No. 68 (EMAG 1983) 385 (1983).
17. Inglis, C. E., Trans. Instron Nov. Archit., 55, 219 (1913).
18. Eshelby, J. D., Proc. Roy. Soc. A, 241, 376 (1957), 241, 561 (1957).
19. Timoshenko, S. and Goodier, J. N., Theory of Elasticity, McGraw Hill, New York(1961).
20. Kelly, A., Strong Solids, Clarendon Press, Oxford, U.K. (1966).
21. Schijve, J., “Analysis of the Fatigue Phenomenon in Aluminium Alloys, Technical Report M2122, N.A.A.R.I. Amsterdam (1964).
22. Griffith, A. A., Phil. Trans. R. Soc., 221, 163 (1920).
23. Wiederhorn, S. M., Hockey, B. J., and Roberts, D. E., Phil. Mag., 28, 783 (1973).
24. Wiederhorn, S. N., J. Am. Ceram. Soc., 52, 485 (1969).
25. Iwasa, N., Veno, T., and Bradt, R. C., J. Soc. Mater. Sci., Japan 30, 1001 (1981).
26. Cox, H. L., Br. J. Appl. Phys., 3, 72 (1952)
27. Rühle, N., Strecker, A., Waidlich, D., and Kraus, B., in Science and Technology of Zirconia II, edited by Claussen, N., Rühle, N., and Heuer, A.H. (The American Ceramic Society, columbus, Ohio 1984) pp. 256274; L. H. Schoenlein, N. Rüihle, and A. H. Heuer, Science and Technology of Zirconia II, edited by N. Claussen, N. Rühle, and A.H. Heuer (The American Ceramic Society, columbus, Ohio 1984), pp,.275–282; W. M. Kriven, Science and Technology of Zirconia II, edited by N. Claussen, N. Rühle, and A.H. Heuer (The American Ceramic Society, columbus, Ohio 1984), pp. 64–77.
28. Company, R. G., Smallman, R. E., and Loretto, N. H., Metal Science, 261 (1976).
29. Company, R. G., Loretto, M.H., and Smallman, R.E., Metal Science, 253 (1976).
30. Angelini, P. and Nader, W., in Proceedings of the Am. Electron Microscopy Society of America, edited by G. W., Bailey, San Francisco Press,San Franisco, CA(1986) pp. 498499.
31. Hsueh, C. H., Evans, A. G., Cannon, R. M., and Brook, R. J. Acta Metall., 34, 927 (1986).
32. Lawn, B. R., Hockey, B. J., and Wiederhorn, S. M., J. Mat. Sci., 15, 1207 (1980).
33. Hockey, B. J. and Lawn, B. R., J. Mat. Sci., 10, 1275 (1975).
34. Lawn, B. R. and Swain, M. V., J. Mat. Sci., 10, 113 (1975).

Strain and Fracture in Whisker Reinforced Ceramics [1]

  • Peter Angelini (a1), W. Mader (a2) and P. F. Becher (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed