Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T18:09:57.067Z Has data issue: false hasContentIssue false

Strain and Fracture in Whisker Reinforced Ceramics [1]

Published online by Cambridge University Press:  25 February 2011

Peter Angelini
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831
W. Mader
Affiliation:
Max-Plank-Institut für Metallforschung, Stuttgart, Federal Republic of Germany
P. F. Becher
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831
Get access

Abstract

Whisker reinforced ceramics offer the potential for increased fracture strength and toughness [2]. However, residual strain due to the thermal expansion mismatch between Al2O3 and SiC may affect mechanical properties of such composites. Crack tip interaction with the whisker/matrix may lead to changes in debonding behavior or influence other toughening mechanisms. The strain field in the Al2O3 matrix surrounding SiC whiskers was analyzed with a High Voltage Transmission Electron Microscope (HVEM). Strain contrast oscillations indicating the presence of residual stress in the specimen were observed in a Al2O3-5 vol % SiC composite having ≃15 μ grain size.The strain field was found to have both radial (perpendicular to whisker axis) and axial (parallel to whisker axis) components. A strain field was also present near the end faces of SiC whiskers. In situ thermal annealing to 573, 873, and 1173 K showed a decrease in the residual strain while in situ cooling to ≃77 K revealed little change in the strain. These results show that residual stresses in the compacts result from differences in thermal expansion and elastic constants of the matrix and whisker materials. Dynamic in situ fracture experiments performed in an HVEM on the Al2O3-5 vol % SiC having ≃1 μm as well as on Al2O3-20 vol % SiC having ≃1 μm grain size revealed that fracture resistance is due to a number of mechanisms including debonding near the whisker matrix interface, crack deflection, pinning, and bridging by SiC whiskers. Formation of secondary fractures and rocracks near and in front of propogating crack tips was also observed in the larger grain size composite.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under Contract DE-AC05–840R21400 with Martin Marietta Energy Systems, Inc.Google Scholar
2. Wei, G. and Becher, P. F., J. Am. Ceram. Soc., 87, 267 (1986).Google Scholar
3. (a) Becher, P. F., Tiegs, T. N., Ogle, J. E., and Warwick, W. H., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G. Hassleman, D.P.H., and Lange, F. F., Plenum Publ. Corp.,New York (1986) pp. 6164; (b) N. Claussen, R. L. Weisskopf, and M. Rühle, Fracture Mechanics of Ceramics, edited by R. C. Bradt, A. G. Evans, D.P.H. Hassleman, and F. F. Lange, Plenum Publ. Corp., New York (1986), pp. 75–86.Google Scholar
4. Selsing, J., J. Am. Ceram. Soc., 419 (1961).Google Scholar
5. Wachtman, J. B. Jr., Scuderi, T. G., and Cleek, G. W., Am. Ceram. Soc., 45, 319 (1962).Google Scholar
6. Slack, G. A. and Bartram, S. F., J. Appl. Phys., 46, 89 (1975).Google Scholar
7. Funkenbush, A. W. and Smith, D. W., Met. Trans., 6A, 2299 (1975).Google Scholar
8. Jupp, R. S., Stein, D. F., and Smith, D. W., J. Mat. Sci., 15, 96 (1980).Google Scholar
9. Baik, S. and White, C. L., “Anisotropic Ca Segregation to the Surface of Al2O3” J. Am. Ceram. Soc. (1987).Google Scholar
10. Ashby, M. F. and Brown, L. M., Phil. Mag., 8, 1983 (1963).Google Scholar
11. Ashby, M. F. and Brown, L. M., Phil. Mag., 8, 1964 (1963).Google Scholar
12. Mott, N. F. and Nabarro, F.R.N., Proc. Phys. Soc. Lond., 52, 86 (1940).CrossRefGoogle Scholar
13. Rühle, M. and Kriven, W. M., Ber. Bunsenges. Phys. Chem., 87, 222 (1983).Google Scholar
14. Kriven, W. M., in Adv. in Ceramics, edited by A. H., Heuer and L. W., Hobbs (The American Ceramic Society, Columbus, Ohio 1984) pp. 6477.Google Scholar
15. Mader, W. and Rühle, M., Proc. 10th ICEM Meeting, 2, 101 (1982).Google Scholar
16. Mader, W. and Rühle, M., Inst. Phys. Conf. Ser. No. 68 (EMAG 1983) 385 (1983).Google Scholar
17. Inglis, C. E., Trans. Instron Nov. Archit., 55, 219 (1913).Google Scholar
18. Eshelby, J. D., Proc. Roy. Soc. A, 241, 376 (1957), 241, 561 (1957).Google Scholar
19. Timoshenko, S. and Goodier, J. N., Theory of Elasticity, McGraw Hill, New York(1961).Google Scholar
20. Kelly, A., Strong Solids, Clarendon Press, Oxford, U.K. (1966).Google Scholar
21. Schijve, J., “Analysis of the Fatigue Phenomenon in Aluminium Alloys, Technical Report M2122, N.A.A.R.I. Amsterdam (1964).Google Scholar
22. Griffith, A. A., Phil. Trans. R. Soc., 221, 163 (1920).Google Scholar
23. Wiederhorn, S. M., Hockey, B. J., and Roberts, D. E., Phil. Mag., 28, 783 (1973).Google Scholar
24. Wiederhorn, S. N., J. Am. Ceram. Soc., 52, 485 (1969).Google Scholar
25. Iwasa, N., Veno, T., and Bradt, R. C., J. Soc. Mater. Sci., Japan 30, 1001 (1981).Google Scholar
26. Cox, H. L., Br. J. Appl. Phys., 3, 72 (1952)Google Scholar
27. Rühle, N., Strecker, A., Waidlich, D., and Kraus, B., in Science and Technology of Zirconia II, edited by Claussen, N., Rühle, N., and Heuer, A.H. (The American Ceramic Society, columbus, Ohio 1984) pp. 256274; L. H. Schoenlein, N. Rüihle, and A. H. Heuer, Science and Technology of Zirconia II, edited by N. Claussen, N. Rühle, and A.H. Heuer (The American Ceramic Society, columbus, Ohio 1984), pp,.275–282; W. M. Kriven, Science and Technology of Zirconia II, edited by N. Claussen, N. Rühle, and A.H. Heuer (The American Ceramic Society, columbus, Ohio 1984), pp. 64–77.Google Scholar
28. Company, R. G., Smallman, R. E., and Loretto, N. H., Metal Science, 261 (1976).Google Scholar
29. Company, R. G., Loretto, M.H., and Smallman, R.E., Metal Science, 253 (1976).Google Scholar
30. Angelini, P. and Nader, W., in Proceedings of the Am. Electron Microscopy Society of America, edited by G. W., Bailey, San Francisco Press,San Franisco, CA(1986) pp. 498499.Google Scholar
31. Hsueh, C. H., Evans, A. G., Cannon, R. M., and Brook, R. J. Acta Metall., 34, 927 (1986).Google Scholar
32. Lawn, B. R., Hockey, B. J., and Wiederhorn, S. M., J. Mat. Sci., 15, 1207 (1980).Google Scholar
33. Hockey, B. J. and Lawn, B. R., J. Mat. Sci., 10, 1275 (1975).Google Scholar
34. Lawn, B. R. and Swain, M. V., J. Mat. Sci., 10, 113 (1975).Google Scholar