Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T13:51:53.914Z Has data issue: false hasContentIssue false

STM-REBIC study of nanocrystalline and crystalline silicon.

Published online by Cambridge University Press:  11 February 2011

E. Nogales
Affiliation:
Departamento. Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain.
B. Méndez
Affiliation:
Departamento. Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain.
J. Piqueras
Affiliation:
Departamento. Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain.
R. Plugaru
Affiliation:
Departamento. Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain.
Get access

Abstract

Electrically active regions of nanocrystalline silicon (nc-Si) films as well as of a p-type crystalline silicon (c-Si) wafer have been investigated by using a scanning electron microscope/scanning tunneling microscope (SEM/STM) combined instrument. The nc-Si films were obtained by boron implantation of amorphous silicon layers with an average nanocrystal size of about 10 nm. STM current constant images reveal a cell structure in the nc-Si films which was also revealed in the STM remote electron beam induced current (REBIC) images with a resolution of up to 20 nm. The contrast in the STM-REBIC images indicate the existence of space charge regions at the boundaries. The influence of the thermal treatment on the cell structure was studied. For comparison, SEM-REBIC and STM-REBIC images from c-Si wafer were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cullis, A. G., Canham, L. T. and Calcott, P. D., J. Appl. Phys. 82, 909 (1997).Google Scholar
2. Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. and Delerue, C., Phys. Rev. Lett. 82, 197 (1999).Google Scholar
3. Holt, D. B., Scanning 22, 28 (2000).Google Scholar
4. Kazmerski, L. L., J. Vac. Sci. Technol. B 9, 1549 (1991).Google Scholar
5. Koschinski, P., Kaufmann, K. and Balk, L. J., Proc. 13th International Congress on Electron Microscopy, Les Editions de Physique, París, p. 1121 (1994).Google Scholar
6. Díaz-Guerra, C. and Piqueras, J., J. Appl. Phys. 86, 1874 (1999).Google Scholar
7. Palm, J., J. Appl. Phys. 74, 1169 (1993).Google Scholar
8. Nogales, E., Méndez, B., Piqueras, J. and Plugaru, R., Semicond‥ Sci. Technol. 16, 789 (2001).Google Scholar
9. Feenstra, R. M., Surf. Sci. 299–300, 965 (1994).Google Scholar