Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T14:08:04.744Z Has data issue: false hasContentIssue false

STM characterization of Cu thin films grown by direct ion deposition

Published online by Cambridge University Press:  17 March 2011

Joshua M. Pomeroy
Affiliation:
Cornell Center for Materials Research, Clark Hall, Cornell University, Ithaca, NY 14853, USA
Aaron Couture
Affiliation:
Cornell Center for Materials Research, Clark Hall, Cornell University, Ithaca, NY 14853, USA
Colin C. Hill
Affiliation:
Cornell Center for Materials Research, Clark Hall, Cornell University, Ithaca, NY 14853, USA
James P. Sethna
Affiliation:
Cornell Center for Materials Research, Clark Hall, Cornell University, Ithaca, NY 14853, USA
Barbara H. Cooper
Affiliation:
deceased August 9, 1999
Joel D. Brock
Affiliation:
Cornell Center for Materials Research, Clark Hall, Cornell University, Ithaca, NY 14853, USA
Get access

Abstract

In certain cases, the incidence energy of constituent atoms activates an atomistic insertion mechanism, which decreases the surface roughness of metal thin films. In an effort to probe this effect, homoepitaxial copper films were grown using a mass/energy selected direct ion deposition technique that allows precise control of the incidence energy. Surface roughness is measured using a Scanning Tunneling Microscope (STM) within the same UHV surface analysis system. The activation of the insertion mechanism near 20 eV triggers smoother crystal growth. The beneficial effects begin to be obscured by adatom/vacancy creation near 30 eV. A sophisticated Kinetic Monte Carlo/Molecular Dynamics (KMC-MD) model supports this interpretation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Michely, T., Kalff, M., and Comsa, G. in Mechanisms and Principles of Epitaxial Growth in Metallic Systems, edited by Wille, T.; Burmester, C.; Terakura, K.; Comsa;, G. and Williams, E., (Mater. Res. Soc. Proc. 278, Warrendale, PA, 1998) pp. 179193.Google Scholar
2. Rosenfeld, G., Poelsema, B., and Comsa, G., in The Chemical Physics of Solid Surfaces Vol.8: Growth and Properties of Epitaxial Layers, edited by King, D. and Woodruff, D., (Elsevier, Amsterdam 1997) pp. 66101 Google Scholar
3. Family, F. and Vicsek, T., J. Phys. A 18, L75–L81 (1985).Google Scholar
4. Greene, J., Barnett, S.A., Sundgren, J.-E., and Rockett, A., in Ion Beam Assisted Film Growth, edited by Itoh, T. (Elsevier, Amsterdam 1989) p. 101.Google Scholar
5. Rosenfeld, G., Lipkin, N., Wulfhekel, W., Kliewer, J., Morgenstern, K., Peolsema, B., and Comsa, G., Appl. Phys. A 61, 455 (1995); W. Wulfhekel, N. Lipkin, J. Kliewer, G. Rosenfeld, L. Jorritsma, B. Poelsema, and G. Comsa, Surf. Sci. 348, 277 (1996); B. Karr, Y. Kim, I. Petrov, D. Bergstrom, D. Cahill, J. Greene, L. Madsen, and J. Sundgren, J. Appl. Phys. 80, 12 (1996); T. Minvielle, R. White, and R. Wilson, J. Appl. Phys. 79 (8), 2750 (1996).Google Scholar
6. Petrov, I., Adibi, F., and Greene, J., Appl. Phys. Lett. 63 (1), 36 (1993).Google Scholar
7. Sosolik, C., Lavery, A., Dahl, E., and Cooper, B., Rev. Scient. Instr. 71, 9 3326 (2000).Google Scholar
8. Michely, T., Land, T., Littmark, U., and Comsa, G., Surf. Sci. 272, 204 (1992).Google Scholar
9. Jacobsen, J., Cooper, B., and Sethna, J., Phys. Rev. B 58 (23), 15847 (1998).Google Scholar
10. Zhou, X. and Wadley, H., Surf. Sci. 430, 5873 (1999).Google Scholar
11. Stolze, P., J. Phys. Condens. Matter 6, 9495 (1994).Google Scholar
12. Naumann, J., Osing, J., Quinn, A., Shvets, I., Surf. Science 388, 212 (1997).Google Scholar
13. Michely, T. and Teichert, C., Phys. Rev. B 50 (15), 11156 (1994).Google Scholar