Skip to main content Accessibility help
×
Home

Stimulated Emission from Single- and Multiple-Quantum-Well GaN-AlGaN Separate-Confinement Heterostructures

  • D. A. S. Loeber (a1), N. G. Anderson (a1), J. M. Redwing (a2), J. S. Flynn (a2), G. M. Smith (a2) and M. A. Tischler (a2)...

Abstract

Stimulated emission characteristics are examined for GaN-AlGaN separate-confinement quantum-well heterostructures grown by MOVPE on 4H-SiC substrates. We specifically focus on comparison of structures with different quantum well active region designs. Polarization resolved edge emission spectra and stimulated emission thresholds are obtained under optical pumping using a stripe excitation geometry. Stimulated emission characteristics are studied as a function of the number of quantum wells in the structure, and are correlated with surface photoluminescence properties. We find reduced stimulated emission thresholds and increased surface photoluminescence intensities as the number of quantum wells is reduced, with the best results obtained for a single-quantum-well structure. These results should provide useful information for the design of GaN-based quantum well lasers.

Copyright

References

Hide All
1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69, 1477 (1996).
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 68, 2105 (1996).
4. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Appl. Phys. Lett. 68, 2105 (1996).
5. Hofmann, R., Gauggel, H.-P., Griesinger, U.A., Grabeldinger, G., Adler, G., Ernst, P., Bolay, H., Harle, V., Scholz, F., Schweizer, H., and Pilkuhn, M.H., Appl. Phys. Lett. 69, 2068 (1996).
6. Redwing, J.M., Loeber, D.A.S., Tischler, M.A., Anderson, N.G., and Flynn, J.S., Appl. Phys. Lett. 69, 1 (1996).
7. Redwing, J.M., Loeber, D.A.S., Tischler, M.A., Anderson, N.G., and Flynn, J.S., in Proceedings of the International Conference on Blue Lasers and Light Emitting Diodes, edited by Yoshikawa, Y., Kishino, K., Dobayashi, M., and Yasuda, T. (Ohmsha Ltd., Tokyo, 1996). pp. 267-270.
8. Loeber, D.A.S., Redwing, J.M., Anderson, N.G., and Tischler, M.A. in Gallium Nitride and Related Compounds, edited by Ponce, F.A., Dupius, R.D., Nakamura, S., and Edmond, J.A. (Mater. Res. Soc. Proc. 395, Pittsburgh, PA 1996), pp. 949-954. Note that, owing to a calibration error, photoexcitation thresholds quoted in this reference were overestimated by a factor of ∼2.5.
9. This analysis assumes Ith(N)= {hv/T[l-exp(αLMQW)]} {L[1/τr + 1/τnr + 2NSI}nth, where Ith is the threshold pump intensity, hv is the pump photon energy, T is the transmission coefficient for the air/semiconductor interface, α is the effective MQW absorption coefficient at the pump photon energy, τr and τnr are the radiative and non-radiative recombination coefficients for the quantum wells, SI is the interface recombination velocity, and nth is the transparency carrier density. Note that the threshold pump intensities of this work are not lasing thresholds: They represent estimates of the pump intensities at which the transparency condition is met.
10. Assuming a 300K radiative lifetime of 0.8 ns, which is obtained from the low temperature data and temperature coefficient given in Ref. 12, a linear fit to our experimental data for Ith(N) extrapolated to N=0 implies a nonradiative lifetime for the quantum well material of 0.15 ns. This yields a quantum well recombination lifetime (less surface recombination) of 0.13 ns.
11. This value is consistent with calculated transparency carrier density estimated for bulk GaN (Chow, W.W., Knorr, A., and Koch, S.W., Appl. Phys. Lett. 67, 754 (1995)) and GaN quantum wells (S. Kamiyama, K. Ohnaka, M. Suzuki, and T. Uenoyama, Jpn. J. Appl. Phys. 31, L821 (1995); A.T. Meney and E.P. O'Reilly, Appl. Phys. Lett. 67, 3013 (1995)).
12. Smith, M., Lin, J.Y., Jiang, H.X., Salvador, A., Botchkarev, A., Kim, W., and Morkoc, H., Appl. Phys. Lett. 69, 2453 (1996).
13. Akasaki, I, Amano, H., Sota, S., Sakai, H., Tanaka, T., and Koide, M., Jpn. J. Appl. Phys. 34, L1577 (1995); M. Koide, S. Yamasaki, S. Nagai, N. Koide, S. Asami, H. Amano, and I. Akasaki, Appl. Phys. Lett. 68, 1403 (1996).

Related content

Powered by UNSILO

Stimulated Emission from Single- and Multiple-Quantum-Well GaN-AlGaN Separate-Confinement Heterostructures

  • D. A. S. Loeber (a1), N. G. Anderson (a1), J. M. Redwing (a2), J. S. Flynn (a2), G. M. Smith (a2) and M. A. Tischler (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.