Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T08:11:39.256Z Has data issue: false hasContentIssue false

Step Profile Fluctuations in Quantum-Well Wire Growth on Vicinal Surfaces

Published online by Cambridge University Press:  28 February 2011

K.J. Hugill
Affiliation:
Semiconductor Materials IRC, Imperial College, London SW7 2BZ, United Kingdom The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
T. Shitara
Affiliation:
Semiconductor Materials IRC, Imperial College, London SW7 2BZ, United Kingdom The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
S. Clarke
Affiliation:
Semiconductor Materials IRC, Imperial College, London SW7 2BZ, United Kingdom The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
D.D. Vvedensky
Affiliation:
Semiconductor Materials IRC, Imperial College, London SW7 2BZ, United Kingdom The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
B.A. Joyce
Affiliation:
Semiconductor Materials IRC, Imperial College, London SW7 2BZ, United Kingdom
Get access

Abstract

Molecular-beam epitaxy of quantum-well wires on vicinal surfaces is studied by application of Monte Carlo simulations of a solid-on-solid model. Characterization of simulated quantum-well wires indicates an optimum regime within which the quality of the quantum-well wire is maximized. The model is extended to include observed anisotropies in GaAs growth on vicinal surfaces, and the conclusion is reached that better quality quantum-well wires may be grown on substrates misoriented from the (001) towards [110], rather than [110], due to relative step edge stability on the two misoriented surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ploog, K., Physica Scripta T19,136 (1987).Google Scholar
2Tanaka, M. and Sakaki, H., Jpn. J. Appl. Phys. 27, L2025 (1988).Google Scholar
3Tsuchiya, M., Gaines, J.M., Yan, R.H., Simes, R.J., Holtz, P.O., Coldren, L.A., and Petroff, P.M., Phys. Rev. Lett. 62,466 (1989).Google Scholar
4Kapon, E., Hwang, D.M., and Bhat, R., Phys. Rev. Lett. 63,430 (1989).Google Scholar
5Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40,939 (1982).Google Scholar
6Neave, J.H., Dobson, P.J., Joyce, B.A., and Zhang, J., Appl. Phys. Lett. 47,100 (1985).Google Scholar
7Pukite, P.R., Petrich, G.S., Batra, S., and Cohen, P.I., J. Cryst. Growth 95,269 (1988).Google Scholar
8Shitara, T. and Nishinaga, T., Jpn. J. Appl. Phys. 28,1212 (1989).Google Scholar
9Clarke, S. and Vvedensky, D.D., Phys. Rev. Lett. 58,2235 (1987).Google Scholar
10Clarke, S. and Vvedensky, D.D., Appl. Phys. Lett. 51, 340 (1987).Google Scholar
11Chen, P., Kim, J.Y., Madhukar, A., and Cho, N.M., J. Vac. Sci. Technol. B 4, 890 (1986).Google Scholar
12Shitara, T., Vvedensky, D.D., Clarke, S., and Joyce, B.A. (submitted to Phys. Rev. B).Google Scholar
13Clarke, S., Wilby, M.R., Vvedensky, D.D., and Kawamura, T., Appl. Phys. Lett. 54, 2417 (1989).Google Scholar
14Hugill, K.J., Clarke, S., Vvedensky, D.D., and Joyce, B.A., J. Appl. Phys. 66, 3415 (1989).Google Scholar