Skip to main content Accessibility help
×
Home

A Statistical Approach to the Effect of Sol-Gel Process Variables on the Physical Properties of Polymer [PLLA]-Silica Hybrid Materials for Use as Biomaterials

  • Carole C. Perry (a1), David Eglin (a1), Saad A.M. Ali (a2) and Sandra Downes (a2)

Abstract

Hybrid poly(L-lactic acid)-silica materials for potential use in orthopaedic applications have been prepared by a sol-gel method using an experimental design approach to investigate the effect of synthesis variables separately and together on the physical form of the organic polymer. The five factors investigated were the molar ratios of tetraethyl orthosilicate (TEOS)/Poly(Llactic acid) (PLLA), Toluene/PLLA, EtOH/TEOS, Water/TEOS and HCl (catalyst)/TEOS. All other synthesis conditions were kept constant. X-Ray powder diffraction (Statton's graphical method) and differential scanning calorimetry were used to assess the extent of polymer crystallinity in the hybrid materials. In accordance with other studies, increasing the molar ratio of TEOS/PLLA lead to increasing incorporation of the organic polymer into the silica network. Increase of the toluene/PLLA molar ratio lead to an increase in the crystallinity of the polymer phase. As our studies investigated the effect of synthesis variables simultaneously it was possible to identify, for the first time, that interactions between specific reactants are important in the development of the two structural components of this hybrid system. The most important of these was the TEOS/PLLA*H2O/TEOS interaction that may indicate that silica species from hydrolysed TEOS interact with the PLLA phase possibly via hydrogen bonding and leads to the lowering of the crystalline order of the polymer The results from this study give useful information on the ability of the organic polymer and the silica phase to form interpenetrating networks, an important requirement for the generation of a potential hybrid polyester-silica biomaterial for orthopaedic applications.

Copyright

References

Hide All
1. Domb, A. J. Kost, J. Wiseman, D. M.Handbook of Biodegradable Polymers”, (Harwood Academic, 1997).
2. Andriano, K. P. Pohjonen, T. Tormala, P. Journal of Applied Biomaterials 5, 133140 (1994).
3. Schwach, G. Vert, M. International Journal of Biological Macromolecules 25, 283291 (1999).
4. Chirila, T. V. Rakoczy, P. E. Garrett, K. L. Lou, X. Constable, I. J. Biomaterials 23, 321342 (2002).
5. Vert, M. Schwach, G. Engel, R. Coudane, J. Journal of Controlled Release 53, 8592 (1998).
6. Leenslag, J. W. Pennings, A. J. Bos, R. R. M., Rozema, F. R. Boering, G. Biomaterials 8, 7073 (1987).
7. Ramakrishna, S. Mayer, J. Wintermantel, E. Leong, K. W. Composites Science and Technology 61, 11891224 (2001).
8. Middleton, J. C. Tipton, A. J. Biomaterials 21, 23352346 (2000).
9. Dell'Erba, R., Groeninckx, G. Maglio, G. Malinconico, M. Migliozzi, A. Polymer 42, 78317840 (2001).
10. Gilding, D. K. Reed, A. M. Polymer 20, 14591464 (1979).
11. Moukwa, M. JOM 49, 4650 (1997).
12. Ignjatovic, N. Tomic, S. Dakic, M. Miljkovic, M. Plavsic, M. Uskokovic, D. Biomaterials 20, 809816 (1999).
13. Kasuga, T. Ozaki, S. Hayakawa, T. Nogami, M. Abe, Y. Journal of Materials Science Letters 18, 20212023 (1999).
14. Schliephake, H. Kage, T. Journal of Biomedical Materials Research 56, 128136 (2001).
15. Tian, D. Dubois, Ph., Jerome, R. Journal of Polymer Science Part A: Polymer Chemistry 35, 22952309 (1997).
16. Tian, D. Dubois, P. Grandfils, C. Jerome, R. Viville, P. Lazzaroni, R. Bredas, J. L. Leprince, P., Chemistry of Materials 9(4), 871874 (1997).
17. Pereira, M. M. Hench, L. L. Journal of Sol-Gel Science and Technology 7, 5968 (1996).
18. Jiang, S. Ji, X. An, L. Jiang, B. Polymer 42, 39013907 (2001).
19. Tian, D. Blacher, S. Dubois, Ph., Jerome, R. Polymer 39, 855 (1998).
20. Tian, D. Blacher, S. Jerome, R. Polymer 40, 951957 (1999).
21. Huang, H. H. Wilkes, G. L. Polymer Bulletin 18, 455462 (1987).
22. Eglin, D. Perry, C. C. Ali, S. A. M., Submitted to Polymer
23. Ahola, M. Rich, J. Kortesuo, P. Kiesvaara, J. Seppala, J. Yli-Urpo, A., International Journal of Pharmaceutics 181, 181191 (1999).
24. Cox, D. R. Reid, N.The Theory of the Design of Experiments”, (Chapman & Hall, 2000).
25. Oye, G. Sjoblom, J. and Stocker, M. Microporous and Mesoporous Materials 34, 291299 (2000).
26. Rueda, N. Bacaud, R. Lanteri, P. and Vrinat, M. Applied Catalysis A: General 215, 8189 (2001).
27. Christensen, R.Analysis of variance design & regression. Applied statistical method.”, (Chapman and Hall, 1996).
28. Aubonnet, S. Thesis Nottingham Trent University (1999).
29. Klug, H. P. Alexander, L. E. in “X-ray Diffraction Procedures for polycrystalline and amorphous materials”, (John Wiley and Sons, 1952).
30. Statton, W. O. Journal of Polymer Science: Part C 18, 3350 (1967).
31. Statton, W. O. Journal of Applied Polymer Science 7, 803815 (1963).
32. Hatakeyama, T. Quinn, F. X.Thermal Analysis: Fundamentals and Applications to Polymer Science”, 2nd ed. (John Wiley & Sons, 1999).
33. Brizzolara, D. Cantow, H. J. Diederichs, K. Keller, E. Domb, A. J. Macromolecules 29, 191–19 (1996).

Related content

Powered by UNSILO

A Statistical Approach to the Effect of Sol-Gel Process Variables on the Physical Properties of Polymer [PLLA]-Silica Hybrid Materials for Use as Biomaterials

  • Carole C. Perry (a1), David Eglin (a1), Saad A.M. Ali (a2) and Sandra Downes (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.