Skip to main content Accessibility help

Stable Low Resistance Ohmic Contacts To p-GaN

  • Mi-Ran Park (a1) and Wayne A. Anderson (a2)


Stable and low-resistance Ohmic contacts are especially important for laser diodes where high current levels are required. Good contacts are especially difficult on p-type GaN which was the motivation for this study. The GaN was epitaxially grown on (0001) sapphire substrates by MOCVD. Resistivity of this layer was 3.5 Ohm-cm and thickness was 2 microns. After conventional cleaning followed by treatment in boiling HNO3: HCl (1:3), metallization was by thermally evaporating 40 nm Au / 60 nm Ni or 70 nm Au / 55 nm Pd. Heat treatment in O2 + N2 at various temperatures followed, with best results at 600 °C or 700 °C, respectively. Best values of the contact resistance were 1.8×10−4 Ohm-cm2 for Pd/Au and 2.65×10−4 Ohm-cm2 for Ni/Au contacts. After repetitive cycling from room temperature to 600 °C, the Ni contacts were very stable and more stable than the Pd contacts. X-ray photoelectron spectroscopy depth profiling showed the Ni contacts to be NiO followed by Au at the interface for the Ni/Au contacts whereas the Pd/Au contacts exhibited a Pd: Au solid solution. Some contacts were quenched in liquid nitrogen following sintering. These contacts were much more uniform under atomic force microscopy examination and gave a 3 times lower contact resistance with the Ni/Au design. Current-voltage-temperature analysis revealed that conduction was predominantly by thermionic field emission.



Hide All
1. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797(1995).
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L217(1996).
3. Holloway, P. H., Kim, T-J., Trexler, J. T., Miller, S., Fijol, J. J., Lampert, W. V., Haas, T. W., Appl. Sur. Sci., 117/118, 362(1997).
4. Koide, Y., Maeda, T., Kawakami, T., Fujita, S., Uemura, T., Shibata, N., and Murakami, M., J.Elec, Mat., V28. 341(1999).
5. Trexler, J. T., Pearton, S. J., Holloway, P. H., Mier, M. G., Evans, K. R., and Karlicek, R. F., Mat. Res. Soc. Symp. Proc., V449, 1091(1997).
6. Kim, J. K. and Lee, J., Appl. Phy. Lett., 73, 2953(1998).
7. Rhoderick, E. H. and Williams, R. H., “Metal-Semiconductor contacts”, Clarendon, 2nd, P206(1988).
8. Park, M. R., Anderson, W. A. and Park, S. J., MRS Internet J. Nitride Semicond. Res. 5S1, W11.77(2000)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed