Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T20:11:07.778Z Has data issue: false hasContentIssue false

Stabilization of Transverse Mode Emission in Vertical-Cavity Surface-Emitting Lasers by Deposition of High Refractive Index Amorphous Gaas

Published online by Cambridge University Press:  10 February 2011

Hyo-Hoon Park
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 106, Yusong, Taejon, 305–600, Korea
Byueng-Su Yoo
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 106, Yusong, Taejon, 305–600, Korea
Hye Yong Chu
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 106, Yusong, Taejon, 305–600, Korea
El-Hang Lee
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 106, Yusong, Taejon, 305–600, Korea
Min Soo Park
Affiliation:
Korea Advanced Institute of Science and Technology, Yusong, Taejon, 305–701, Korea
Byung Tae Ahn
Affiliation:
Korea Advanced Institute of Science and Technology, Yusong, Taejon, 305–701, Korea
Jae-Heon Shin
Affiliation:
Korea Advanced Institute of Science and Technology, Yusong, Taejon, 305–701, Korea
Yong Hee Lee
Affiliation:
Korea Advanced Institute of Science and Technology, Yusong, Taejon, 305–701, Korea
Get access

Abstract

We report successful application of a low-temperature-grown amorphous GaAs (a-GaAs) layer for stabilization of the fundamental transverse mode of InGaAs/GaAs vertical-cavity surface-emitting lasers. The maximum currents maintaining a stable fundamental transverse mode were increased by the antiguide effect of a-GaAs with a high refractive index. For 10-μm- and 15-μm-diameter devices, we attained a stable single-mode emission over a wide range of current. The antiguiding of transverse modes in vertical cavity buried in the high refractive cladding layer was calculated using a two-dimensional beam propagation method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, Y.H., Jewell, J.L., Scherer, A., McCall, S.L., Harbison, J.P., and Florez, L.T., Electron. Lett. 25, 1377 (1989).Google Scholar
2. Chang-Hasnain, C.J., Harbison, J.P., Hasnain, G., Lehmen, A. C. Von, Florez, L.T., and Stoffel, N.G., IEEE J. Quantum Electron. 27, 1402 (1991).Google Scholar
3. Morgan, R.A., Guth, G.D., Focht, M.W., Asom, M.T., Kojima, K., Rogers, L.E., and Callis, S.E., IEEE Photon. Technol. Lett. 4, 374 (1993).Google Scholar
4. Wu, Y.A., Chang-Hasnain, C.J., and Nabiev, R., Electron. Lett. 29, 1861 (1993).Google Scholar
5. Huffaker, D.L., Shin, J., Deng, H., Lin, C.C., Deppe, D.G., and Streetman, B.G., Appl. Phys. Lett. 65, 2642 (1994).Google Scholar
6. Matsumoto, N. and Kumabe, K., Jpn. J. Appl. Phys. 19, 1583 (1980).Google Scholar
7. Yoo, B.-S., Park, H.-H., and Lee, E.-H., Electron. Lett. 30, 1060 (1994).Google Scholar
8. Park, H.-H. and Yoo, B.-S., ETRI J., 17, 1 (1995).Google Scholar
9. Yoo, J.Y., Shin, J.H., Lee, Y.H., Park, H.-H., and Yoo, B.-S., Opt. & Quantum Electron. 27, 421 (1995).Google Scholar
10. Park, H.-H., Yoo, B.-S., Park, M.S., Lee, J., Lee, H.G., Lee, E.-H., Shin, J.-H. and Lee, Y.H., Mat. Res. Soc. Symp. Proc. 378, 1013 (1995).Google Scholar
11. Wu, Y.A., Li, G.S., Nabiev, R.F., Choquette, K.D., Caneau, C., and Chang-Hasnain, C.J., IEEE J. Selected Topics in Quantum Electron. 1, 629 (1995).Google Scholar