Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T09:33:28.248Z Has data issue: false hasContentIssue false

Stabilization of Metastable Zinc-Blende Phase MnTe by Ionized Cluster Beam Deposition

Published online by Cambridge University Press:  25 February 2011

K. Ando
Affiliation:
Electrotechnical Laboratory, Tsukuba Science City, Ibaraki 305, Japan
K. Takahashi
Affiliation:
Electrotechnical Laboratory, Tsukuba Science City, Ibaraki 305, Japan
Y. Takeuchi
Affiliation:
Electrotechnical Laboratory, Tsukuba Science City, Ibaraki 305, Japan
Get access

Abstract

The ionized cluster beam (ICB) deposition was use to stabilize the metastable zinc-blende (ZB) MnTe films directly on GaAs (100) substrates at 300 °C with MnTe cluster ion beam. Influences of the ionization and the acceleration voltage on film properties were investigated by the reflection high-energy electron diffraction (RHEED), optical reflection, Raman scattering, and photoluminescence. The ZB-MnTe was stabilized by 3kV acceleration of the MnTe cluster beam. These results showed that the ICB deposition is useful to get compounds having crystalline phase different from the structures observed io equilibrium-grown bulk crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Takaoka, H., Yamada, I., and Takagi, T., J. Vac. Sci. Technol. A3, 2665(1985).CrossRefGoogle Scholar
[2] Koyanagi, T., Matsubara, K., Takaoka, H., and Takagi, T., J. Appl. Phys. 61, 3020(1987).CrossRefGoogle Scholar
[3] Wei, S- H. and Zunger, A., Phys. Rev. Lett. 56, 2391(1986).CrossRefGoogle Scholar
[4] Allen, J. W., Lucovsky, G., and Mikkelsen, J. C. Jr, Solid State Commun. 24, 367(1977).CrossRefGoogle Scholar
[5] Durbin, S. M., Han, J., Sungki, O, Kobayashi, M., Menke, D. R., Gunshor, R. L., Fu, Q., Pelekanos, N., Nurmikko, A. V., Li, D., Gonsalves, J., and Otsuka, N., Appl. Phys. Lett. 55, 2087(1989).CrossRefGoogle Scholar
[6] Ando, K., Takahashi, K., and Okuda, T., J. Magn. Magn. Mater. 104–107, 993(1992).CrossRefGoogle Scholar
[7] Ando, K., Takahashi, K., Okuda, T., and Umehara, M., Phys. Rev. BGoogle Scholar
[8] Anno, H., Koyanagi, T., and Matsubara, K., J. Crystal Growth 117, 816(1992).CrossRefGoogle Scholar
[9] Klosowski, P., Giebultowicz, T. M., Rhyne, J. J., Samarth, N., Luo, H., and Furdyna, J. K., J. Appl. Phys. 70, 6221(1991).CrossRefGoogle Scholar
[10] Gaj, J. A., Galazka, R. R., and Nawrocki, M., Solid State Commun. 25, 193(1978).CrossRefGoogle Scholar
[11] Mobasser, S. R. and Hart, T. R., Proc. SPIE 524, 137(1985).CrossRefGoogle Scholar
[12] Venugopalan, S., Petrou, A., Galazka, R. R., Ramdas, A. K., and Rodriguez, S., Phys. Rev. 25, 2681(1982).CrossRefGoogle Scholar