Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T00:53:05.262Z Has data issue: false hasContentIssue false

The Stability of Lattice Mismatched Thin Films

Published online by Cambridge University Press:  21 February 2011

J.E. Guyer
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
P.W. Voorhees
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
Get access

Abstract

We examine the linear stability of a planar, alloy thin film, exposed to a deposition flux from the vapor. The film surface is subject to stresses generated by compositional inhomogeneity, as well as by film-substrate lattice mismatch. In addition to the misfit induced surface instability shown by numerous previous studies, we find that the deposition flux alone can produce instability and that complex interactions occur when both deposition and surface transport processes are present. Solute expansion stresses result in several novel behaviors. Under certain circumstances, the growing film can be completely stabilized by a tensile misfit and destabilized by the same magnitude of compressive misfit. The predictions of this theory are compared to the results of several experimental studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
2 Asaro, R. J. and Tiller, W. A., Met. Trans. 3, 1789 (1972).Google Scholar
3 Grinfel’d, M. A., Sov. Phys. Dokl. 31, 831 (1986).Google Scholar
4 Srolovitz, D. J., Acta metall. 37, 621 (1989).Google Scholar
5 Spencer, B. J., Voorhees, P. W., and Davis, S. H., J. Appl. Phys. 73, 4955 (1993).Google Scholar
6 Gao, H., Int. J. Solids Struct. 28, 703 (1991).Google Scholar
7 Snyder, C. W., Mansfield, J. F., and Orr, B. G., Phys. Rev. B 46, 9551 (1992).Google Scholar
8 Yao, J. Y., Andersson, T. G., and Dunlop, G. L., Appl. Phys. Lett. 53, 1420 (1988).Google Scholar
9 Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
10 Guha, S., Madhukar, A., and Rajkumar, K. C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
11 Cullis, A. G., Robbins, D. J., Pidduck, A. J., and Smith, P. W., J. Cryst. Growth 123, 333 (1992).Google Scholar
12 Jesson, D. E. et al. , Phys. Rev. Lett. 71, 3737 (1993).Google Scholar
13 Tersoff, J. and LeGoues, F. K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
14 Gao, H., Morphological instabilities along surfaces of anisotropic solids, in Modern Theory of Anisotropic Elasticity and Applications, edited by Wu, J. J., Ting, T. C. T., and Barnett, D., pages 139150, Philadelphia, PA, 1991, SIAM.Google Scholar
15 Guyer, J. E. and Voorhees, P. W., Phys. Rev. Lett. 74, 4031 (1995).Google Scholar
16 Guyer, J. E. and Voorhees, P. W., submitted.Google Scholar
17 Larché, F. C. and Cahn, J. W., Acta metall. 33, 331 (1985).Google Scholar
18 Vasudev, P., Asaro, R. J., and Tiller, W. A., Acta metall. 23, 341 (1975).Google Scholar
19 Spencer, B. J., Voorhees, P. W., Davis, S. H., and McFadden, G. B., Acta metall. mater. 40, 1599 (1992).Google Scholar
20 Xie, Y. H. et al. , Phys. Rev. Lett. 73, 3006 (1994).Google Scholar
21 Spencer, B. J., Voorhees, P. W., and Davis, S. H., Phys. Rev. Lett. 67, 3696 (1991).Google Scholar
22 Goryunova, N. A., The Chemistry of Diamond-like Semiconductors, Chapman and Hall, Ltd., London, 1965.Google Scholar
23 Tsao, J. Y., Materials Fundamentals of Molecular Beam Epitaxy, Academic Press, Inc., San Diego, CA, 1993.Google Scholar
24 Landau, L. D. and Lifshitz, E. M., Theory of Elasticity, volume 7 of Course of Theoretical Physics, Pergamon Press, London, 1959, Translated from the Russian by J. B. Sykes and W. H. Reid.Google Scholar
25 Blakely, J. M., Introduction to the Properties of Crystal Surfaces, volume 12 of International Series on Materials Science and Technology, Pergammon Press, Oxford, 1973.Google Scholar
26 Dismukes, J. P., Ekstrom, L., and Paff, R. J., J. Phys. Chem. 68, 3021 (1964).Google Scholar
27 Ohring, M., The Materials Science of Thin Films, Academic Press, Inc., San Diego, CA, 1992.Google Scholar
28 Chason, E., Tsao, J. Y., Horn, K. M., Picraux, S. T., and Atwater, H. A., J. Vac. Sci. Technol. A 8, 2507 (1990).Google Scholar
29 Neave, J. H., Dobson, P. J., Joyce, B. A., and Zhang, J., Appl. Phys. Lett. 47, 100 (1985).Google Scholar
30 Panish, M. B. and Ilegems, M., Phase equilibria in ternary III-V systems, in Progress in Solid-State Chemistry, volume 7, pages 3983, Pergamon Press, Oxford, 1972.Google Scholar
31 Morishita, Y. et al. , J. Vac. Sci. Technol. B 12, 2532 (1994).Google Scholar
32 Ponchet, A., Rocher, A., Ougazzaden, A., and Miercea, A., J. Appl. Phys. 75, 7881 (1994).Google Scholar
33 Tersoff, J., Phys. Rev. Lett. 74, 4962 (1995).Google Scholar
34 Xie, Y. H. et al. , Phys. Rev. Lett. 74, 4963 (1995).Google Scholar
35 Weatherly, G. C., private communication.Google Scholar
36 Yokoyama, H., Tanimoto, M., Shinohara, M., and Inoue, N., Jpn. J. Appl. Phys. 33, L1292 (1994).Google Scholar
37 Snyder, C. W., Orr, B. G., Kessler, D., and Sander, L. M., Phys. Rev. Lett. 66, 3032 (1991).Google Scholar