Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T17:35:27.567Z Has data issue: false hasContentIssue false

Stability and Surface Acidity of Aluminum Oxide Grafted on Silica Gel Surface

Published online by Cambridge University Press:  10 February 2011

L. L. L. Prado
Affiliation:
Centro de Caracterização e Desenvolvimento de Materials, Departamento de Engenharia de Materials, Universidade Federai de São Carlos, 1365–905 São Carlos, SP, Brazil
P. A. P. Nascente
Affiliation:
Centro de Caracterização e Desenvolvimento de Materials, Departamento de Engenharia de Materials, Universidade Federai de São Carlos, 1365–905 São Carlos, SP, Brazil
S. C. de Castro
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, 13083–970 Campinas, SP, Brazil
Y. Gushikem
Affiliation:
Instituto de Química, Universidade Estadual de Campinas, 13083–970 Campinas, SP, Brazil
Get access

Abstract

The synthesis of aluminum oxide grafted on silica gel surface was carried out by the reaction of a suitable aluminum precursor with the surface hydrolysis of the oxide support. The chemical and physical properties of the attached oxide, SiO2/ Al2O3, can be quite different than those found for bulk Al2O3. The advantage of this preparation method, compared to the conventional ones (impregnation, precipitation and calcination), is that the oxide is highly dispersed on the surface (monolayer or submonolayer). We characterized the surface oxides treated at the temperature range of 423 to 1573 K employing X-ray photoelectron spectroscopy (XPS), solid state nuclear magnetic resonance spectroscopy (NMR), and diffuse reflectance spectroscopy (DRS). XPS was used to identify the oxidation states and atomic ratios. Al27 NMR detected two species for samples heated up to 1023 K, and another one above this temperature. DRS, using pyridine as a molecular probe, showed that both Lewis and Brönsted acid sites are stable up to 1023 K. We concluded that the aluminum oxide is highly dispersed on the silica gel surface and it remains stable up to 1023 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drago, R.S. and Getty, E.E., J. Am. Chem. Soc. 110, p. 3, 311 (1988).Google Scholar
2. Drago, R.S., Petrosius, S.C. and Chronister, C.W., Inorg. Chem. 33, p. 367 (1994).Google Scholar
3. Goodman, D.W., J. Vac. Sci. Technol. A14, p. 1,526 (1996).10.1116/1.580290Google Scholar
4. Denofre, S., Gushikem, Y., de Castro, S.C. and Kawano, Y., J. Chem. Soc. Faraday Trans. 89, p. 1,057 (1993).Google Scholar
5. Rao, S.N.R., Waddel, E., Mitchell, M.B. and White, M.G., J. Catal. 163, p. 176 (1996).10.1006/jcat.1996.0317Google Scholar
6. De Canio, E.C., Edwards, J.C. and Bruno, J.W., J. Catal. 148, p. 176 (1994).Google Scholar
7. Cocke, D.L., Johnson, E.D. and Merrill, R.P., Cat. Rev. Sci. Eng. 26, p. 163 (1984).Google Scholar
8. Knozinger, H. and Ratnasamy, P., Cat. Rev. Sci. Eng. 17, 31 (1978).10.1080/03602457808080878Google Scholar
9. Stone, W.E.E., El Shafei, G.M.S., Sanz, J. and Selim, S.A., J. Phys. Chem. 97, p. 10,127 (1993).Google Scholar
10. Hess, A., Kemnitz, E., Lippitz, A., Unger, W.E.S. and Menz, D.H., J. Catal. 148, p. 270 (1994).10.1006/jcat.1994.1208Google Scholar
11. Wagner, C.D., Passoja, D.E., Hillery, H.F., Kiniski, T.G., Six, H.A., Jansen, W.T. and Taylor, J.A., J. Vac. Sci. Technol. 21, p. 933 (1982).Google Scholar
12. Chen, F.R., Davis, J.G. and Fripiat, J.J., J. Cat. 133, p. 263 (1992).Google Scholar
13. Morterra, C. and Magnacca, G, Cat. Today, 27, p. 497 (1996).10.1016/0920-5861(95)00163-8Google Scholar