Skip to main content Accessibility help
×
Home

Stability and Structural Transition of Gold Nanowires under Their Own Surface Stresses

  • Ken Gall (a1), Michael Haftel (a2), Jiankuai Diao (a1), Martin L. Dunn (a1), Noam Bernstein (a2) and Michael J. Mehl (a2)...

Abstract

First-principle, tight binding, and semi-empirical embedded atom calculations are used to investigate a tetragonal phase transformation in gold nanowires. As wire diameter is decreased, tight binding and modified embedded atom simulations predict a surface-stress-induced phase transformation from a face-centered-cubic (fcc) <100> nanowire into a body-centered-tetragonal (bct) nanowire. In bulk gold, all theoretical approaches predict a local energy minimum at the bct phase, but tight binding and first principle calculations predict elastic instability of the bulk bct phase. The predicted existence of the stable bct phase in the nanowires is thus attributed to constraint from surface stresses. The results demonstrate that surface stresses are theoretically capable of inducing phase transformation and subsequent phase stability in nanometer scale metallic wires under appropriate conditions.

Copyright

Corresponding author

* E-mail address: diao@colorado.edu.

References

Hide All
(1) Johnson, C. J., Dujardin, E., Davis, S. A., Murphy, C. J., and Mann, S.. J. Mater. Chem. 12, pp. 17651770 (2002).
(2) Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., Adv. Mater. 15, pp. 353389 (2003).
(3) Agrait, N., Rubio, G., and Vieira, S., Phys. Rev. Lett. 74, 39953998 (1995).
(4) Brandbyge, M., Schiotz, J., Sorensen, M. R., Stoltze, P., Jacobsen, K. W., Norskov, J. K., Olesen, L., Laegsgaard, E., Stensgaard, I., and Besebbacher, F,, Phys. Rev. B 52, 84998514 (1995).
(5) Stalder, A. and Durig, U., J. Vac. Sci. Tech. 14, 12591263 (1996).
(6) Kondo, Y. and Takayanagi, K., Phys. Rev. Lett. 79, 34553458 (1997).
(7) Ohnishi, H., Kondo, Y., and Takayanagi, K., Nature 395, 780783 (1998).
(8) Yanson, A. I., Bollinger, G. R., van der Brom, H. E., Agrait, N., and Ruitenbeek, J. M., Nature 395, 783785 (1998).
(9) Marszalek, P. E., Greenleaf, W. J., Li, H., Oberhauser, A. F., and Fernandez, J. M., Proc. Nat. Acad. Sci, 97, 62826286 (2000).
(10) Kondo, Y. and Takayanagi, K., Science 289, 606608 (2000).
(11) Rodrigues, V., Fuhrer, T., and Ugarte, D., Phys. Rev. Let. 85, 41244127 (2000).
(12) Rodrigues, V. and Ugarte, D., Phys. Rev. B 63, 073405–1–4 (2001).
(13) Wang, B., Yin, S., Wang, G., Buldum, A., and Zhao, J. (2001), Phys. Rev. Let. 86, 20462049.
(14) Zhong, Z. Y., Male, K. B., KB, , and Luong, J. H. T, Anal. Lett. 36 (15) 30973118 (2003).
(15) Wagner, P., Hegner, M., Kernen, P., Zaugg, F., and Semenza, G., Biophys. Jour. 70 (5) 20522066 (1996).
(16) Rabkeclemmer, C. E., Leavitt, A. J., and Beebe, T. P., Lang. 10 (6) 17961800 (1994).
(17) Savran, C. A., Knudsen, S. M., Ellington, A. D., and Manalis, S. R.. Anal. Chem. 76 (11) 31943198 (2004).
(18) Diao, J., Gall, K., Dunn, M. (2003), Nature Materials, 2, pp. 656660.
(19) Jacobs, K., Zaziski, D., Scher, E. C., Herhold, A. B., and Alivisatos, A. P., Science, vol. 293, pp. 18031806 (2001).
(20) Zaziski, D., Prilliman, S., Scher, E. C., Casula, M., Wickham, J., Clark, S. M., and Alivisatos, A. P., Nanoletters, vol. 4, pp. 943946(2004).
(21) Olson, G. B. and Hartman, H. (1982), J. De. Phys., vol. 43, pp. 855865.
(22) Kanamaru, S., Leiman, P. G., Kostyuchenko, V. A., Chipman, P. R., Mesyanzhinov, V. V., Arisaka, F., and Rossmann, M. G., Nature, vol. 415, pp. 553557 (2002).
(23) Jona, F. and Marcus, P. M., Phys. Rev. B, vol. 65, pp. 155403: 1–4 (2002).
(24) Ji, X. Z., Tian, Y., and Jona, F., Phys. Rev. B, vol. 65, pp. 155404: 1–4 (2002).
(25) Wills, J. M., Eriksson, O., Soderlind, P., and Boring, A. M., Phys. Rev. Lett., vol. 68, pp. 28022805 (1992).
(26) Mehl, M. J. and Boyer, L. L., Phys. Rev. B, 43, pp. 94989502 (1991).
(27) Mehl, M. J., Aguayo, A., Boyce, L. L., and de Coss, R., Phys. Rev. B 70, 014105 (2004).
(28) Daw, M. S., and Baskes, M. I., Phys. Rev. B 29 (12), 6443 (1984).
(29) Baskes, M.I, Phys. Rev. B 46, 27272742 (1992).
(30) Mehl, M. J. and Papaconstantopoulos, D. A., Phys. Rev. B 54(7): 45194530 (1996).
(31) Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).
(32) Diao, J., Gall, K. and Dunn, M. L.. J. Mech. Phys. Solids 52 (9), 19351962 (2004).
(33) Streitz, F. H., Cammarata, R. C., and Sieradzki, K., Phys. Rev. B 49 (15), 1069910706 (1994).
(34) Fiorentini, V., Methfessel, M., and Scheffler, M., Phys. Rev. Lett. 71 (7): 10511054 (1993).
(35) Yu, B. D. BD, and Scheffler, M., Phys. Rev. B, 56 (24): R15569-R15572 (1997).
(36) Needs, R. J., Godfrey, M. J., and Mansfield, M., Surf. Sci. 242 (1–3): 215221 (1991).
(37) Kollar, J., Vitos, L., Osorio-Guillen, J. M., and Ahuja, R., Phys. Rev. B, 68 (24): 245417 (2003).
(38) Diao, J., Gall, K. and Dunn, M. L., Phys. Rev. B 70, 075413 (2004).

Stability and Structural Transition of Gold Nanowires under Their Own Surface Stresses

  • Ken Gall (a1), Michael Haftel (a2), Jiankuai Diao (a1), Martin L. Dunn (a1), Noam Bernstein (a2) and Michael J. Mehl (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed