Skip to main content Accessibility help
×
Home

The Stability and Reversibility of TiCl3 Doped LiBH4

  • Ming Au (a1), Arthur R Jurgensen (a2), William A Spenser (a3), Donald L Anton (a4) and Frederick E Pinkerton (a5)...

Abstract

In an effort to develop reversible metallic borohydrides with high hydrogen storage capacities and low dehydriding temperature, modifications to LiBH4 with metal halides TiCl3 have been conducted. Adding TiCl3 to LiBH4 effectively reduced the dehydriding temperature through an ion exchange interaction by producing instable transition metal borohydrides and lithium salts. The material LiBH4+0.1TiCl3 desorbed 3.5wt% and 8.5wt% hydrogen at 150°C and 450°C respectively. Subsequent re-absorption of 6wt% hydrogen at 500°C and 70 bars was observed. The XRD analysis of the rehydrided samples confirmed the partial reformation of LiBH4. However, adding more TiCl3 made material more volatile and irreversible. TGA-RGA analyses indicated diborane evolution during dehydrogenation resulting in unrecoverable capacity loss and irreversibility. TiCl3 reduced LiBH4 stability and also made material irreversible.

Copyright

References

Hide All
[1] Muller, A., Havre, L. et al. US Patent 4193978, (1980)
[2] Zuttel, A., Rentsch, S. et al. J.Alloy.Compd. 356–357(2003)515520
[3] Orimo, S., Nakamori, Y. et al. “Dehydriding and rehydriding reactions of LiBH4 ”, J.Alloy.Comp. 404–406 (2005)427
[4] Pinkerton, F., Meisner, G. et al. J.Phys.Chem.B 110(2005)68 10.1021/jp0455475
[5] Vajo, J., Skeith, S. et al. J.Alloy.Compd. 390(2005)5561
[6] Nakamori, Y., Li, H. et al. Materials Transactions, V47, N8(2006)18981901
[7] Vajo, J. and Skeith, S., J.Phys.Chem.B. 109 (2005) 37193722
[8] Au, M. and Jurgensen, A., J.Phys.Chem.B 110(2006)70627067
[9] Au, M., Jurgensen, A. et al. J.Phys.Chem.B 110(2006)2648226487
[10] Zhang, Y., Zhong, W-S. et al. Int.J.Hydrogen.Energy. in pressdoi:10.1016/j.ijhydene.2007.04.010
[11] Shore, S.G. and Parry, R.W., J.Am.Chem.Soc. 80(1958)812
[12] Schlesinger, H.I., Brown, H. et al. J.Am.Chem.Soc. 75(1953)199204
[13] Hoekstra, H. and Katz, J.J., J.Am.Chem.Soc. 71(1949)24882492
[14] Schlesinger, H.I., Brown, H. et al. J.Am.Chem.Soc. 75(1953)209213
[15] Heisenberg, W., Bothe, W. et al. Z. Naturforsch. 1952, 7b, 5860
[16] Jeon, E. and Cho, Y-W, J.Alloy.Compd. 422(2006)18981901
[17] Jensen, C., “Fundamental study of high capacity reversible metal hydrides”, DOE Hydrogen program annual review meeting, 5/16/2007
[18] Zhao, J-C., Andrus, M. et al. “Light weight intermetallics for hydrogen storage”, DOE Hydrogen program annual review meeting, 5/16/2007
[19] Nakamori, Y., Wima, K. et al. Phys.Rev.B. in press
[20] Orimo, S., Nakamori, Y. et al. J.Alloy.Compd. 404–406(2005)427430
[21] Johnson, K. and Sholl, D., “First principle modeling of hydrogen storage in metal hydride systems”, DOE Hydrogen program annual review meeting, 5/16/2007
[22] Nakamori, Y., Li, H. et al. Materials Transactions, V47, N8(2006)18981901
[23] Olson, G.L. and Vajo, J.J., “Thermodynamically Tuned Nanophase materials for Reversible Hydrogen Storage”, Project ID#ST16, 2006 DOE Hydrogen Program Annual Review Meeting, Washington, DC, May16-19, 2006

Keywords

The Stability and Reversibility of TiCl3 Doped LiBH4

  • Ming Au (a1), Arthur R Jurgensen (a2), William A Spenser (a3), Donald L Anton (a4) and Frederick E Pinkerton (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed