Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:35:15.490Z Has data issue: false hasContentIssue false

Stability and Crystallization of Amorphous Semiconductor Multilayers

Published online by Cambridge University Press:  25 February 2011

P. D. Persans
Affiliation:
Physics Department and Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, NY 12180–3590
A. F. Ruppert
Affiliation:
Exxon Research and Engineering Company Annandale, NJ 08801
B. Abeles
Affiliation:
Exxon Research and Engineering Company Annandale, NJ 08801
Get access

Abstract

We discuss recent measurements of relaxation, interdiffusion and crystallization in amorphous hydrogenated semiconductors and insulators prepared as periodic multilayers. The stability of multilayer structures depends upon temperature, repeat distance and the nature of the materials. Crystallization of amorphous silicon in amorphous silicon/amorphous silicon dioxide layers is inhibited when the silicon thickness is reduced below 20 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Abeles, B. and Tiedje, T., Phys. Rev. Lett., 51,2003,(1983).Google Scholar
2.Abeles, B., Tiedje, T., Liang, K.S., Deckman, H.W., Stasiewski, H., Scanlon, J., J.Non-Cryst.Sol. 66, 351, (1984).Google Scholar
3.Persans, P.D., Abeles, B., Stasiewski, H., and Scanlon, J., Proc. of the 17th Int. Conf. on the Phys. of Semiconductors, ed. Chadi, J. and Harrison, W.,(Springer, New York, 1985), p. 449.Google Scholar
4.Kakalios, J., Fritzsche, H., Ibaraki, N., and Ovshinsky, S., J. Non-Cryst. Sol. 66, 339,(1984).Google Scholar
5.Persans, P.D., Ruppert, A.F., Abeles, B., and Tiedje, T., Phys. Rev. B32, 5558, (1985), and J. de Phys., Coll.C8, 46, 597 (1985).Google Scholar
6.Allred, D.D., Hernandez, J.Gonzalez-, Nguyen, O.V., Martin, D., and Pawlik, D., J. Mat. Res., 1, 468, (1986).Google Scholar
7.Persans, P.D. and Ruppert, A.F. in Phase Transitions in Condensed Systems-Experiments and Theory, ed. Cargill, G.Slade III, Spaepen, F., Tu, K.-N.,(Materials Research Society, Pittsburgh, 1987), 329.Google Scholar
8.Persans, P.D. and Ruppert, A.F., in Semiconductor-Based Heterostructures: Interfacial Structure and Stability, ed. Green, M.L., (Materials Research Society, Pittsburgh, 1987).Google Scholar
9.Persans, P., Ruppert, A.F., and Abeles, B., J. Non-Cryst. Sol., (in press)Google Scholar
10.Tsu, R., Hernandez, J.Gonzalez-, Chao, S.S., Lee, S.C., and Tanaka, K., Appl. Phys. Lett., 40, 534, (1982).Google Scholar
11.Donovan, E., Spaepen, F., and Turnbull, D., J. Appl. Phys.,57, 1795, (1985).Google Scholar
12.Spaepen, F., Acta Met. 26, 1167 (1978).Google Scholar
13.Moustakas, T.D., Weitz, D.A., Prestridge, E.B., and Friedman, R., in Plasma Synthesis and Etching of Electronic Materials, (Materials Research Society, Pittsburgh,1985)Google Scholar