Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T10:43:50.134Z Has data issue: false hasContentIssue false

Spontaneous Lateral Modulations in InAlAs Buffer Layers Grown by MBE on InP Substrates

Published online by Cambridge University Press:  10 February 2011

F. Peiró
Affiliation:
EME, Enginyeria i Materials Electrònics. Dept. Física Aplicada i Electrònica, Universitat de Barcelona. Avda. Diagonal 645–647. 08028 Barcelona, Spain
A. Cornet
Affiliation:
EME, Enginyeria i Materials Electrònics. Dept. Física Aplicada i Electrònica, Universitat de Barcelona. Avda. Diagonal 645–647. 08028 Barcelona, Spain
J. C. Ferrer
Affiliation:
EME, Enginyeria i Materials Electrònics. Dept. Física Aplicada i Electrònica, Universitat de Barcelona. Avda. Diagonal 645–647. 08028 Barcelona, Spain
J. R. Morante
Affiliation:
EME, Enginyeria i Materials Electrònics. Dept. Física Aplicada i Electrònica, Universitat de Barcelona. Avda. Diagonal 645–647. 08028 Barcelona, Spain
G. Halkias
Affiliation:
Foundation for Research and Technology-Hellas (FORTH), IESL/MRG, P.O. Box 1527, Heraklion, Greece.
A. Georgakilas
Affiliation:
Foundation for Research and Technology-Hellas (FORTH), IESL/MRG, P.O. Box 1527, Heraklion, Greece.
Get access

Abstract

Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) have been used to analyze the spontaneous appearance of lateral composition modulations in InyAl1−yAs (yIn.≅ 50%) buffer layers of single quantum well structures grown by molecular beam epitaxy on exact and vicinal (100) InP substrates, at growth temperatures in the range of 530°C–580°C. The influence of the growth temperature, substrate misorientation and epilayer mismatch on the InAlAs lateral modulation is discussed. The development of a self-induced quantum-wire like morphology in the In0.53Ga0.47As single quantum wells grown over the modulated buffers is also commented on.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weisbuch, C.. J. Cryst. Growth 127, 742 (1993).Google Scholar
2. Nagamune, Y., Sakaki, H., Kouwenhoven, L.P., Mur, L.C., Harmans, C.J., et al. Appl. Phys. Lett. 64, 2379 (1994).Google Scholar
3. Vurgaftman, I., Hinckley, J.M. and Singh, J.. IEEE J. Quantum Elect. 30, 75 (1994).Google Scholar
4. Peiró, F., Cornet, A., Morante, J.R., J. Vac. Sci. Technol. B13, 2057 (1995).Google Scholar
5. Peiró, F., Cornet, A. and Morante, J.R.. Mat. Res. Soc. Symp. Proc. Vol.312, 131 (1993).Google Scholar
6. Yamamoto, T., lnai, M., Takebe, T., Fujii, M. and Kobayashi, K.. J. Cryst. Growth 127, 865 (1993).Google Scholar
7. Tsuchiya, M., Pettrof, P.M. and Coldren, L.A.. Appl. Phys. Lett. 54, 1690 (1989).Google Scholar
8. Bauer, E.W.G. and Sakaki, H.. Surf Sci. 267, 442 (1992).Google Scholar
9. Chen, A.C., Moy, A.M., Pearah, P.J., Hsieh, K.C. and Cheng, K.Y.. J. Vac. Sci. Technol. B11, 830 (1993).Google Scholar
10. Nakashima, H., Takeuchi, M, et al. Ext. Abs. of 1995 Int. Conf. on Sol. Sat. Dev. and Mat. S–VI–6, 785 (1995).Google Scholar
11. Ponchet, A., Rocher, A., Emery, J.Y., Starck, C. and Goldstein, L.. J. Appl. Phys. 74, 3778 (1993).Google Scholar